Skip to main content

Wonbong Choi

Title: Professor

Department: Materials Science and Engineering

College: College of Engineering

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, North Carolina State University, 1997
    Major: Materials Science And Engineer

Current Scheduled Teaching

MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2025
MTSE 5500.008Electronic, Optical and Magnetic MaterialsSpring 2025
MTSE 6950.016Doctoral DissertationFall 2024
MEEN 5480.001Energy MaterialsFall 2024
MTSE 5800.025Special Studies in Materials ScienceFall 2024

Previous Scheduled Teaching

MTSE 6950.120Doctoral DissertationSpring 2024
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2024 Syllabus SPOT
MTSE 5500.008Electronic, Optical and Magnetic MaterialsSpring 2024 SPOT
MTSE 3003.005Fundamentals of Materials Science and Engineering LaboratorySpring 2024 Syllabus SPOT
MTSE 3003.006Fundamentals of Materials Science and Engineering LaboratorySpring 2024 Syllabus SPOT
MTSE 6950.016Doctoral DissertationFall 2023
MEEN 4480.001Energy MaterialsFall 2023 Syllabus SPOT
MEEN 5480.001Energy MaterialsFall 2023 SPOT
MTSE 6940.016Individual ResearchFall 2023
MTSE 5800.025Special Studies in Materials ScienceFall 2023 SPOT
MEEN 6950.726Doctoral DissertationSpring 2023
MTSE 6950.120Doctoral DissertationSpring 2023
MTSE 5500.008Electronic, Optical and Magnetic MaterialsSpring 2023 SPOT
MTSE 3003.005Fundamentals of Materials Science and Engineering LaboratorySpring 2023 Syllabus SPOT
MTSE 3003.006Fundamentals of Materials Science and Engineering LaboratorySpring 2023 Syllabus SPOT
MTSE 3003.007Fundamentals of Materials Science and Engineering LaboratorySpring 2023 Syllabus SPOT
MTSE 3003.009Fundamentals of Materials Science and Engineering LaboratorySpring 2023 Syllabus SPOT
MEEN 5950.726Masters ThesisSpring 2023
MEEN 6950.722Doctoral DissertationFall 2022
MEEN 4480.001Energy MaterialsFall 2022 Syllabus SPOT
MEEN 5760.001Energy MaterialsFall 2022 SPOT
MEEN 5760.601Energy MaterialsFall 2022 SPOT
MEEN 5950.726Masters ThesisFall 2022
MTSE 5800.025Special Studies in Materials ScienceFall 2022 SPOT
MEEN 5950.725Masters ThesisSummer 10W 2022
MEEN 6950.726Doctoral DissertationSpring 2022
MTSE 6940.008Individual ResearchSpring 2022
MTSE 6940.016Individual ResearchSpring 2022
MEEN 5950.726Masters ThesisSpring 2022
MTSE 5900.016Special Problems in Materials ResearchSpring 2022
MEEN 6950.722Doctoral DissertationFall 2021
MTSE 6950.016Doctoral DissertationFall 2021
MEEN 4480.001Energy MaterialsFall 2021 Syllabus SPOT
MEEN 5760.001Energy MaterialsFall 2021 SPOT
MEEN 5760.601Energy MaterialsFall 2021 SPOT
MTSE 6940.016Individual ResearchFall 2021
MEEN 5950.726Masters ThesisFall 2021
MEEN 6950.726Doctoral DissertationSpring 2021
MTSE 6950.016Doctoral DissertationSpring 2021
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2021 Syllabus SPOT
MTSE 3003.005Fundamentals of Materials Science and Engineering LaboratorySpring 2021 Syllabus SPOT
MTSE 3003.007Fundamentals of Materials Science and Engineering LaboratorySpring 2021 Syllabus SPOT
MTSE 3003.010Fundamentals of Materials Science and Engineering LaboratorySpring 2021 Syllabus SPOT
MTSE 6940.008Individual ResearchSpring 2021
MTSE 5950.016Master's ThesisSpring 2021
MEEN 6950.726Doctoral DissertationFall 2020
MTSE 6950.016Doctoral DissertationFall 2020
MEEN 4480.001Energy MaterialsFall 2020 Syllabus SPOT
MTSE 6940.016Individual ResearchFall 2020
MTSE 6940.216Individual ResearchFall 2020
MEEN 5950.726Masters ThesisFall 2020
MEEN 5800.004Selected Topics of Contemporary Interest in Mechanical EngineeringFall 2020 SPOT
MTSE 5800.001Special Studies in Materials ScienceFall 2020 SPOT
MTSE 5900.016Special Problems in Materials ResearchSummer 5W2 2020
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2020 Syllabus
MTSE 3003.005Fundamentals of Materials Science and Engineering LaboratorySpring 2020 Syllabus
MTSE 3003.006Fundamentals of Materials Science and Engineering LaboratorySpring 2020
MTSE 3003.007Fundamentals of Materials Science and Engineering LaboratorySpring 2020
MTSE 3003.008Fundamentals of Materials Science and Engineering LaboratorySpring 2020
MEEN 6940.716Individual ResearchSpring 2020
MTSE 6940.008Individual ResearchSpring 2020
MTSE 6940.016Individual ResearchSpring 2020
MTSE 6940.116Individual ResearchSpring 2020
MTSE 5900.016Special Problems in Materials ResearchSpring 2020
MEEN 4480.001Energy MaterialsFall 2019 Syllabus SPOT
MEEN 6940.744Individual ResearchFall 2019
MTSE 6940.016Individual ResearchFall 2019
MTSE 6940.216Individual ResearchFall 2019
MEEN 5800.004Selected Topics of Contemporary Interest in Mechanical EngineeringFall 2019 SPOT
MTSE 6900.016Special ProblemsFall 2019
MTSE 6910.016Special ProblemsFall 2019
MTSE 5900.016Special Problems in Materials ResearchFall 2019
MTSE 6950.118Doctoral DissertationSummer 10W 2019
MTSE 4900.021Special Topics in Materials Science and EngineeringSummer 10W 2019
MTSE 6950.016Doctoral DissertationSpring 2019
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2019 Syllabus SPOT
MTSE 3003.005Fundamentals of Materials Science and Engineering LaboratorySpring 2019 Syllabus SPOT
MTSE 3003.006Fundamentals of Materials Science and Engineering LaboratorySpring 2019 Syllabus SPOT
MTSE 3003.007Fundamentals of Materials Science and Engineering LaboratorySpring 2019 Syllabus SPOT
MTSE 3003.008Fundamentals of Materials Science and Engineering LaboratorySpring 2019 Syllabus SPOT
MTSE 6940.008Individual ResearchSpring 2019
MTSE 6900.016Special ProblemsSpring 2019
MTSE 6910.016Special ProblemsSpring 2019
MTSE 6950.016Doctoral DissertationFall 2018
MTSE 6940.016Individual ResearchFall 2018
MTSE 6940.116Individual ResearchFall 2018
MTSE 5630.001Introduction to NanotechnologyFall 2018 SPOT
MEEN 5800.004Selected Topics of Contemporary Interest in Mechanical EngineeringFall 2018 SPOT
MEEN 5800.604Selected Topics of Contemporary Interest in Mechanical EngineeringFall 2018 SPOT
MTSE 4900.016Special Topics in Materials Science and EngineeringFall 2018
MEEN 4810.004Topics in Mechanical & Energy EngineeringFall 2018 Syllabus SPOT
MTSE 6950.016Doctoral DissertationSpring 2018
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2018 Syllabus SPOT
MTSE 4900.016Special Topics in Materials Science and EngineeringSpring 2018
MTSE 6950.016Doctoral DissertationFall 2017
MTSE 5800.001Special Studies in Materials ScienceFall 2017 SPOT
MTSE 4900.016Special Topics in Materials Science and EngineeringFall 2017
MTSE 4900.021Special Topics in Materials Science and EngineeringSummer 10W 2017
MTSE 6950.016Doctoral DissertationSpring 2017
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2017 Syllabus SPOT
MEEN 5800.003Selected Topics of Contemporary Interest in Mechanical EngineeringSpring 2017 SPOT
MEEN 4800.003Topics in Mechanical & Energy EngineeringSpring 2017 Syllabus SPOT
MTSE 6950.016Doctoral DissertationFall 2016
MTSE 6940.016Individual ResearchFall 2016
MTSE 6940.116Individual ResearchFall 2016
MTSE 5600.005Materials CharacterizationFall 2016 SPOT
MTSE 4910.016Materials Science ResearchFall 2016
MTSE 6940.118Individual ResearchSummer 10W 2016
MTSE 2900.021Introduction to Materials Science ResearchSummer 10W 2016
MTSE 6950.016Doctoral DissertationSpring 2016
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2016 Syllabus SPOT
MTSE 6940.008Individual ResearchSpring 2016
MTSE 6940.116Individual ResearchSpring 2016
MEEN 5950.728Masters ThesisSpring 2016
MTSE 5900.016Special Problems in Materials ResearchSpring 2016
MTSE 6950.016Doctoral DissertationFall 2015
MTSE 6940.016Individual ResearchFall 2015
MEEN 5950.726Masters ThesisFall 2015
MTSE 5600.005Materials CharacterizationFall 2015 SPOT
MTSE 5920.016Research Problems in Lieu of ThesisFall 2015
MTSE 5930.016Research Problems in Lieu of ThesisFall 2015
MTSE 5900.016Special Problems in Materials ResearchFall 2015
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2015 Syllabus
MTSE 6940.008Individual ResearchSpring 2015
MTSE 6940.016Individual ResearchSpring 2015
MTSE 6940.116Individual ResearchSpring 2015
MTSE 5800.016Special Studies in Materials ScienceSpring 2015
MTSE 6940.016Individual ResearchFall 2014
MTSE 5600.005Materials CharacterizationFall 2014
MTSE 5900.016Special Problems in Materials ResearchFall 2014
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2014
MTSE 6940.008Individual ResearchSpring 2014
MTSE 6940.016Individual ResearchSpring 2014
MTSE 4100.016Senior Research Project IISpring 2014
MTSE 5600.005Materials CharacterizationFall 2013
MTSE 4090.016Senior Research Project IFall 2013
MTSE 3070.008Electrical, Optical, and Magnetic Properties of MaterialsSpring 2013 Syllabus
MTSE 6940.016Individual ResearchSpring 2013
MTSE 6900.016Special ProblemsSpring 2013
MTSE 6910.016Special ProblemsSpring 2013
MTSE 5600.005Materials CharacterizationFall 2012

Published Intellectual Contributions

    Book

  • Choi, W. (2021). Rechargeable Lithium-Sulfur Battery: Present and Future. https://www.mdpi.com/journal/batteries/special_issues/Rechargeable_Lithium-Sulfur_Battery_Present_Future
  • Choi, W. (2017). Nanoscience and technology: an international journal. 8 (4) New York,
  • Choi, W. (2017). Nanoscience and Technology. 8 (3) New York, Begell.
  • Book Chapter

  • Choudhary, N., Choi, W. (2015). Graphene Synthesis and Applications. Handbook of Carbon Nano Materials. 1-49. WORLD SCIENTIFIC. http://dx.doi.org/10.1142/9789814678919_0001
  • Das, S., Sudhagar, P., Kang, Y.S., Choi, W. (2015). Synthesis and Characterization of Graphene. Carbon Nanomaterials for Advanced Energy Systems. 85-131. John Wiley & Sons, Inc. http://dx.doi.org/10.1002/9781118980989.ch3
  • Choudhary, N., Hwang, S., Choi, W. (2014). Carbon Nanomaterials: A Review. Handbook of Nanomaterials Properties. 709-769. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-31107-9_37
  • Kang, C., Lahiri, I., Baskaran, R., Choi, M., Kim, W., Sun, Y., Choi, W. (2014). 3D Multiwall Carbon Nanotubes (MWCNTs) for Li-Ion Battery Anode. Supplemental Proceedings. 35-41. John Wiley & Sons, Inc.. http://dx.doi.org/10.1002/9781118357002.ch5
  • Viswanathan, S., Li, P., Choi, W., Filipek, S., Balasubramaniam, T., Renugopalakrishnan, V. (2012). Protein–Carbon Nanotube Sensors. Methods in Enzymology. 165-194. Elsevier. http://dx.doi.org/10.1016/b978-0-12-391858-1.00010-1
  • Lee, J., Choi, W. (2005). Current Status of Nanotechnology in Korea and Research into Carbon Nanotubes. Nanotechnology. 25-44. John Wiley & Sons, Ltd. http://dx.doi.org/10.1002/0470021071.ch2
  • Conference Proceeding

  • Omary, D., Dawn, M., Quonoey, B., Choi, W., Mehta, G. (2022). Data acquisition and Online Pressure Map Generation for a Defect-engineered MoS2-based Piezoelectric Sensor Array. IEEE Dallas Circuits and Systems Conference.
  • Al-Amin, C., Sinha, R., Pala, N., Choi, W., George, T., Islam, M.S., Dutta, A.K. (2014). Novel graphene FETs with field-controlling electrodes to improve RF performance. Micro- and Nanotechnology Sensors, Systems, and Applications VI. SPIE. http://dx.doi.org/10.1117/12.2050985
  • Choi, W., Lahiri, I. (2012). Novel design considerations for high efficiency carbon nanotube field emitters. 25th International Vacuum Nanoelectronics Conference. IEEE. http://dx.doi.org/10.1109/ivnc.2012.6316855
  • Viswanathan, S., Pingzuo Li, Wonbong Choi, Filipek, S., Balasubramaniam, T.A., Renugopalakrishnan, V. (2012). Protein-carbon nanotube and graphene sensors: Single platform integrated micro clinical lab for monitoring blood analytes. 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1). IEEE. http://dx.doi.org/10.1109/ispts.2012.6260869
  • Das, S., Lahiri, I., Kang, C., Choi, W. (2011). Engineering carbon nanomaterials for future applications: energy and bio-sensor. Micro- and Nanotechnology Sensors, Systems, and Applications III. SPIE. http://dx.doi.org/10.1117/12.883743
  • Choi, W., Vedala, H., Kim, T., Hwang, S., Jeon, M. (2008). Electronic Detection and Influence of Environmental Factors on Conductivity of Single DNA Molecule using Single-walled Carbon Nanotube Electrodes. Materials Research Society Symposium Proceedings. Materials Research Society. http://dx.doi.org/10.1557/proc-1142-jj20-44
  • Correction

  • Seelaboyina, R., Huang, J., Park, J., Kang, D.H., Choi, W.B. (2007). Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions (vol 17, pg 4840, 2006). Nanotechnology. 18 (27)
  • Cover Feature

  • Choi, W. (2020). Improving Lithium-Metal Battery Performance under the Conditions of Lean Electrolyte through MoS2 Coating. ChemElectroChem.
  • Editorial

  • Choi, W., Miller, G., Wallace, I., Harper, J., Mittler, R., Gilroy, S. (2017). Orchestrating rapid long-distance signaling in plants with Ca2+ , ROS and electrical signals.. Other.
  • Journal Article

  • Kang, C., Cha, E., Patel, M., Wu, H., Choi, W. Three-Dimensional Carbon Nanostructures for Advanced Lithium-Ion Batteries. Other. 2 (4) 23. MDPI AG. http://dx.doi.org/10.3390/c2040023
  • Adhikari, P.R., Lee, E., Smith, L.M., Kim, J., Shi, S.Q., Choi, W. (2023). Effect of morphological variation in three-dimensional multiwall carbon nanotubes as the host cathode material for high-performance rechargeable lithium--sulfur batteries. RSC Advances. 13 (14) 9402--9412. Royal Society of Chemistry.
  • Choi, W. (2023). Investigation of 3D printed lightweight hybrid composites via theoretical modeling and machine learning. Composites Part B: Engineering. 265 110958.
  • Choi, W. (2023). 2.Boosting Piezoelectricity by 3D Printing PVDF-MoS2 Composite as a Conformal and High-Sensitivity Piezoelectric Sensor. Advanced Functional Materials. 33 2302946. Wiley.
  • Choi, W. (2023). Effect of Morphological Variation in Three-Dimensional Multiwall Carbon Nanotubes as Host Cathode Material for High-Performance Rechargeable Lithium-Sulfur Batteries. RSC Advances. 13 9402.
  • Choi, W. (2023). Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing. ACS Applied Materials & Interfaces. 15 (12) 15839. https://doi.org/10.1021/acsami.2c21688
  • Choi, W. (2023). Lithium-CO2 batteries and beyond. Frontiers in Energy Research. 11 1150737.
  • Ojo, I., Hathaway, E., Gonzales, R., Adhikari, P., Sathish, V., Kunam, B., Khalid, Y., Cui, J., Choi, W., Perez, J. (2022). Effects on Graphene of Electron Irradiation at 25 keV and Dosages Up to 10^18 electrons/cm^2. Journal of Vacuum Science and Technology A. 41 (1) 012201.
  • Stephen, A., Bhoyate, S., Cao, P., Advincula, R.C., Dahotre, N.B., Jiang, Y., Choi, W. (2022). 3D Printed Flexible Anode for High Performance Zinc Ion Battery. MRS Communications. 12 894.
  • Dahotre, N.B., Choi, W., Jiang, Y. (2022). Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Other. Wiley.
  • Choi, W. (2022). 3D-printed flexible anode for high-performance zinc ion battery. MRS Communications. (12) 894-901.
  • Demchuk, Z., Zhu, J., Li, B., Islam, M., Cao, P., Bocharova, V., Yang, G., Zhou, H., Jiang, Y., Choi, W., Advincula, R.C., Cao, P. (2022). Unravelling the influence of surface modification on the ultimate performance of carbon fiber/epoxy composites. ACS Applied Materials & Interfaces. 14 (40) 45775.
  • Jiang, Y., Islam, M., He, R., Huang, X., Cao, P., Advincula, R.C., Dahotre, N., Dong, P., Wu, H., Choi, W. (2022). Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Other. 2200492.
  • Choi, W. (2022). Data acquisition and Online Pressure Map Generation for a Defect-engineered MoS2-based Piezoelectric Sensor Array. IEEE Circuits and Systems Magazine. 1. IEEE.
  • Khatri, N., Islam, M., Cao, P., Advincula, R.C., Choi, W., Jiang, Y. (2021). Integrating helicoid channels for passive control of fiber alignment in direct-write 3D printing. Other. 48 102419.
  • Ferdousi, S., Chen, Q., Soltani, M., Zhu, J., Cao, P., Choi, W., Advincula, R., Jiang, Y. (2021). Characterize traction–separation relation and interfacial imperfections by data-driven machine learning models. Scientific Reports. 11 14330.
  • Choi, W., Prasad, V., Mehta, G., kim, j., lee, e. (2021). Asymmetric 2D MoS2 for Scalable and High-Performance Piezoelectric Sensors. ACS Applied Materials & Interfaces. ACS Publications.
  • Choi, W. (2021). Advances of 2D MoS2 for High-Energy Lithium Metal Batteries. Frontiers in Energy. 9 44.
  • Choi, W. (2020). Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale. 5 (5) 808.
  • Shi, J., Patel, M.D., Cai, L., Choi, W., Shi, S.Q. (2020). Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. Bulletin of Materials Science. 43 (1) 1--6. Indian Academy of Sciences.
  • Choi, W. (2020). Improving Lithium–Metal Battery Performance under Lean Electrolyte through MoS2 Coating. ChemPhysChem. 7 890-892. Wiley. https://onlinelibrary.wiley.com/doi/pdf/10.1002/celc.201901735
  • Choi, W. (2020). Realizing Scalable Two-Dimensional MoS2 Synaptic Devices for Neuromorphic Computing. Chemistry of Materials. 32 (24) 10447. ACS Publications. https://pubs.acs.org/doi/10.1021/acs.chemmater.0c03112
  • Choi, W., Mehta, G., Kim, J. (2020). Stable and high-performance piezoelectric sensor via CVD grown WS2. Nanotechnology. 31 445203. https://iopscience.iop.org/article/10.1088/1361-6528/aba659
  • Choi, W. (2020). Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2‑Coated Zn Anode. ACS Applied Materials & Interfaces. 12 (24) 27249-27257. ACS.
  • Cha, E., Patel, M., Bhoyate, S., Prasad, V., Choi, W. (2020). Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. The Royal Society of Chemistry. (1:5(5)) 808-831. doi: 10.1039/c9nh00730j
  • Choi, W. (2020). Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. Bulletin of Materials Science.
  • Choi, W. (2019). Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. 1 43.
  • Cha, E., Patel, M., Choi, T., Choi, W. (2018). Lithium-Sulfur Batteries: The Effect of High Sulfur Loading on the Electrochemical Performance. ECS Transactions. 85 (13) 295-302. Denton, 3940 N. Elm St.
  • choi, w. (2018). Composition-tunable synthesis of large-scale Mo1-xWxS2 alloys with enhanced photoluminescence. ACS Nano. 12 (6) 6301.
  • choi, w. (2018). Composition-tunable synthesis of large-scale Mo1-xWxS2 alloys with enhanced photoluminescence. ACS Nano. Prof.. 12 (6) 6301-6309.
  • Cha, E., Patel, M.D., Park, J.G., Hwang, J., Prasad, V., Cho, K., Choi, W. (2018). 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries.. Nature Nanotechnology.
  • Choi, w., Kang, C., Cha, E. In situ fabrication of a graphene-coated threedimensional nickel oxide anode for high-capacity lithium-ion batteries. RSC Advances.
  • Park, J., Kim, M.S., Cha, E., Kim, J., Choi, W. (2017). Synthesis of uniform single layer WS2 for tunable photoluminescence. Scientific Reports. 7 (1) Springer Nature. http://dx.doi.org/10.1038/s41598-017-16251-2
  • Patel, M.D., Cha, E., Kang, C., Gwalani, B., Choi, W. (2017). High performance rechargeable Li-S batteries using binder-free large sulfur-loaded three-dimensional carbon nanotubes. Carbon. 118 120-126. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2017.03.035
  • Patel, M.D., Cha, E., Choi, W. (2017). A Binder Free and High Sulfur Loaded Three-Dimensional Carbon Nanotubes Electrode for High Performance Li-S Batteries. ECS Transactions. 77 (11) 437-445. The Electrochemical Society. http://dx.doi.org/10.1149/07711.0437ecst
  • Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D., Lee, Y.H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today. 20 (3) 116-130. Elsevier BV. http://dx.doi.org/10.1016/j.mattod.2016.10.002
  • Ozden, B., Khanal, M.P., Park, J., Uprety, S., Mirkhani, V., Yapabandara, K., Kim, K., Kuroda, M., Bozack, M.J., Choi, W., Park, M. (2017). Raman and X-ray photoelectron spectroscopy investigation of the effect of gamma-ray irradiation on MoS2. Other. 12 (4) 271-274. Institution of Engineering and Technology (IET). http://dx.doi.org/10.1049/mnl.2016.0712
  • Xia, C., Kang, C., Patel, M.D., Cai, L., Gwalani, B., Banerjee, R., Shi, S.Q., Choi, W. (2016). Pine Wood Extracted Activated Carbon through Self-Activation Process for High-Performance Lithium-Ion Battery. ChemistrySelect. 1 (13) 4000–4007.
  • Xia, C., Kang, C., Patel, M.D., Cai, L., Gwalani, B., Banerjee, R., Shi, S.Q., Choi, W. (2016). Pine Wood Extracted Activated Carbon through Self-Activation Process for High-Performance Lithium-Ion Battery. ChemistrySelect. 1 (13) 4000--4007.
  • Jeong, J., Shrestha, R., Lee, K., Horne, K., Das, S., Choi, W., Choi, T. (2016). Thermal conductivity measurement of few layer graphene film by a micropipette sensor with laser point heating source. Materials Research Express.
  • Patel, M.D., Cha, E., Choudhary, N., Kang, C., Lee, W., Hwang, J.Y., Choi, W. (2016). Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries. Nanotechnology. 27 (49) 495401. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/27/49/495401
  • Patel, M.D., Cha, E., Choudhary, N., Kang, C., Lee, W., Hwang, J.Y., Choi, W. (2016). Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries.. Nanotechnology. 27 (49) 495401.
  • Choudhary, N., Park, J., Hwang, J.Y., Chung, H., Dumas, K.H., Khondaker, S.I., Choi, W., Jung, Y. (2016). Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure. Scientific Reports. 6 (1) Springer Nature. http://dx.doi.org/10.1038/srep25456
  • Choudhary, N., Park, J.G., Hwang, J.Y., Chung, H.S., Dumas, K.H., Khondaker, S.I., Choi, W., Jung, Y. (2016). Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure.. Scientific Reports. 6 25456.
  • Choudhary, N., Patel, M.D., Park, J., Sirota, B., Choi, W. (2016). Synthesis of large scale MoS2 for electronics and energy applications. Journal of Materials Research. 31 (07) 824-831. Cambridge University Press (CUP). http://dx.doi.org/10.1557/jmr.2016.100
  • Kang, C., Cha, E., Baskaran, R., Choi, W. (2016). Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode. Nanotechnology. 27 (10) 105402. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/27/10/105402
  • Kang, C., Cha, E., Baskaran, R., Choi, W. (2016). Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode.. Nanotechnology. 27 (10) 105402.
  • Kang, C., Patel, M., Rangasamy, B., Jung, K., Xia, C., Shi, S.Q., Choi, W. (2015). Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Other. 299 465-471. Elsevier BV. http://dx.doi.org/10.1016/j.jpowsour.2015.08.103
  • Dahotre, N.B., Choi, W. (2015). Direct-deposited MoS2 Thin Film Electrodes for High Performance Supercapacitors. 3 24049-24054,.
  • Kang, C., Patel, M., Rangasamy, B., Jung, K., Xia, C., Shi, S.Q., Choi, W. (2015). Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Other. 299 465--471. Elsevier.
  • Choudhary, N., Patel, M., Ho, Y., Dahotre, N.B., Lee, W., Hwang, J.Y., Choi, W. (2015). Directly deposited MoS2 thin film electrodes for high performance supercapacitors. Other. 3 (47) 24049-24054. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c5ta08095a
  • Choi, D., Kuru, C., Choi, C., Noh, K., Hwang, S., Choi, W., Jin, S. (2015). Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Small. 11 (26) 3143-3152. Wiley-Blackwell. http://dx.doi.org/10.1002/smll.201402784
  • Vabbina, P., Choudhary, N., Chowdhury, A., Sinha, R., Karabiyik, M., Das, S., Choi, W., Pala, N. (2015). Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS2/Graphene Schottky Junction. ACS Applied Materials & Interfaces. 7 (28) 15206-15213. American Chemical Society (ACS). http://dx.doi.org/10.1021/acsami.5b00887
  • Vabbina, P., Choudhary, N., Chowdhury, A.A., Sinha, R., Karabiyik, M., Das, S., Choi, W., Pala, N. (2015). Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.. ACS Applied Materials & Interfaces. 7 (28) 15206-13.
  • Choi, D., Kuru, C., Choi, C., Noh, K., Hwang, S., Choi, W., Jin, S. (2015). Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping.. Other. 11 (26) 3143-52.
  • Park, J., Choudhary, N., Smith, J., Lee, G., Kim, M., Choi, W. (2015). Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Applied Physics Letters. 106 (1) 012104. AIP Publishing. http://dx.doi.org/10.1063/1.4905476
  • Choudhary, N., Park, J., Hwang, J.Y., Choi, W. (2014). Growth of Large-Scale and Thickness-Modulated MoS2 Nanosheets. ACS Applied Materials & Interfaces. 6 (23) 21215-21222. American Chemical Society (ACS). http://dx.doi.org/10.1021/am506198b
  • Choudhary, N., Park, J.G., Hwang, J.Y., Choi, W. (2014). Growth of large-scale and thickness-modulated MoS₂ nanosheets.. ACS Applied Materials & Interfaces. 6 (23) 21215-22.
  • Rangasamy, B., Hwang, J.Y., Choi, W. (2014). Multi layered Si–CuO quantum dots wrapped by graphene for high-performance anode material in lithium-ion battery. Carbon. 77 1065-1072. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2014.06.022
  • Gilroy, S., Suzuki, N., Miller, G., Choi, W., Toyota, M., Devireddy, A.R., Mittler, R. (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.. Trends in Plant Science. 19 (10) 623-30.
  • Das, S., Kim, M., Lee, J., Choi, W. (2014). Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review. Critical Reviews in Solid State and Materials Sciences. 39 (4) 231-252. Informa UK Limited. http://dx.doi.org/10.1080/10408436.2013.836075
  • Choi, D., Kuru, C., Choi, C., Noh, K., Hong, S., Das, S., Choi, W., Jin, S. (2014). Nanopatterned Graphene Field Effect Transistor Fabricated Using Block Co-polymer Lithography. Materials Research Letters. 2 (3) 131-139. Informa UK Limited. http://dx.doi.org/10.1080/21663831.2013.876676
  • Devadoss, A., Sudhagar, P., Das, S., Lee, S.Y., Terashima, C., Nakata, K., Fujishima, A., Choi, W., Kang, Y.S., Paik, U. (2014). Synergistic metal-metal oxide nanoparticles supported electrocatalytic graphene for improved photoelectrochemical glucose oxidation.. ACS Applied Materials & Interfaces. 6 (7) 4864-71.
  • Devadoss, A., Sudhagar, P., Das, S., Lee, S.Y., Terashima, C., Nakata, K., Fujishima, A., Choi, W., Kang, Y.S., Paik, U. (2014). Synergistic Metal–Metal Oxide Nanoparticles Supported Electrocatalytic Graphene for Improved Photoelectrochemical Glucose Oxidation. ACS Applied Materials & Interfaces. 6 (7) 4864-4871. American Chemical Society (ACS). http://dx.doi.org/10.1021/am4058925
  • Kang, C., Baskaran, R., Hwang, J., Ku, B., Choi, W. (2014). Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. Carbon. 68 493-500. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2013.11.026
  • Vabbina, P.K., Karabiyik, M., Al-Amin, C., Pala, N., Das, S., Choi, W., Saxena, T., Shur, M. (2014). Controlled Synthesis of Single-Crystalline ZnO Nanoflakes on Arbitrary Substrates at Ambient Conditions. Other. 31 (2) 190-194. Wiley-Blackwell. http://dx.doi.org/10.1002/ppsc.201300208
  • Das, S., Sudhagar, P., Kang, Y.S., Choi, W. (2014). Graphene synthesis and application for solar cells. Journal of Materials Research. 29 (03) 299-319. Cambridge University Press (CUP). http://dx.doi.org/10.1557/jmr.2013.297
  • Niu, J., Li, M., Choi, W., Dai, L., Xia, Z. (2014). Growth of junctions in 3D carbon nanotube-graphene nanostructures: A quantum mechanical molecular dynamic study. Carbon. 67 627-634. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2013.10.036
  • Das, S., Lahiri, D., Agarwal, A., Choi, W. (2014). Interfacial bonding characteristics between graphene and dielectric substrates. Nanotechnology. 25 (4) 045707. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/25/4/045707
  • Das, S., Lahiri, D., Agarwal, A., Choi, W. (2014). Interfacial bonding characteristics between graphene and dielectric substrates.. Nanotechnology. 25 (4) 045707.
  • Yan, Z., Ma, L., Zhu, Y., Lahiri, I., Hahm, M.G., Liu, Z., Yang, S., Xiang, C., Lu, W., Peng, Z., Sun, Z., Kittrell, C., Lou, J., Choi, W., Ajayan, P.M., Tour, J.M. (2013). Three-Dimensional Metal-Graphene-Nanotube Multifunctional Hybrid Materials. ACS Nano. 7 (1) 58-64.
  • Das, S., Lahiri, D., Lee, D., Agarwal, A., Choi, W. (2013). Measurements of the adhesion energy of graphene to metallic substrates. Carbon. 59 121-129. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2013.02.063
  • Kang, C., Baskaran, R., Kim, W., Sun, Y., Choi, W. (2013). 3 Dimensional Carbon Nanostructures for Li-ion Battery Anode. Other. 1505 Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2013.538
  • Lahiri, I., Choi, W. (2013). Carbon Nanostructures in Lithium Ion Batteries: Past, Present, and Future. Critical Reviews in Solid State and Materials Sciences. 38 (2) 128-166. Informa UK Limited. http://dx.doi.org/10.1080/10408436.2012.729765
  • Yan, Z., Ma, L., Zhu, Y., Lahiri, I., Hahm, M.G., Liu, Z., Yang, S., Xiang, C., Lu, W., Peng, Z., Sun, Z., Kittrell, C., Lou, J., Choi, W., Ajayan, P.M., Tour, J.M. (2013). Three-dimensional metal-graphene-nanotube multifunctional hybrid materials.. ACS Nano. 7 (1) 58-64.
  • Kang, C., Lahiri, I., Baskaran, R., Kim, W., Sun, Y., Choi, W. (2012). 3-dimensional carbon nanotube for Li-ion battery anode. Other. 219 364-370. Elsevier BV. http://dx.doi.org/10.1016/j.jpowsour.2012.07.050
  • Das, S., Sudhagar, P., Nagarajan, S., Ito, E., Lee, S.Y., Kang, Y.S., Choi, W. (2012). Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon. 50 (13) 4815-4821. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2012.06.006
  • Lahiri, I., Wong, J., Zhou, Z., Choi, W. (2012). Ultra-high current density carbon nanotube field emitter structure on three-dimensional micro-channeled copper. Applied Physics Letters. 101 (6) 063110. AIP Publishing. http://dx.doi.org/10.1063/1.4745010
  • Lahiri, D., Das, S., Choi, W., Agarwal, A. (2012). Unfolding the Damping Behavior of Multilayer Graphene Membrane in the Low-Frequency Regime. ACS Nano. 6 (5) 3992-4000. American Chemical Society (ACS). http://dx.doi.org/10.1021/nn3014257
  • Lahiri, D., Das, S., Choi, W., Agarwal, A. (2012). Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime.. ACS Nano. 6 (5) 3992-4000.
  • Das, S., Sudhagar, P., Ito, E., Lee, D., Nagarajan, S., Lee, S.Y., Kang, Y.S., Choi, W. (2012). Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry. 22 (38) 20490. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c2jm32481d
  • Vabbina, P.K., Das, S., Pala, N., Choi, W. (2012). Synthesis of Crystalline ZnO Nanosheets on Graphene and Other Substrates at Ambient Conditions. Other. 1449 Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2012.1041
  • Viswanathan, S., Li , P., Choi, W., Filipek, S., Balasubramaniam, T.A., Renugopalakrishnan, V. (2012). Protein-carbon nanotube sensors: single platform integrated micro clinical lab for monitoring blood analytes.. Other. 509 165-94.
  • Das, S., Seelaboyina, R., Verma, V., Lahiri, I., Hwang, J.Y., Banerjee, R., Choi, W. (2011). Synthesis and characterization of self-organized multilayered graphene–carbon nanotube hybrid films. Journal of Materials Chemistry. 21 (20) 7289. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c1jm10316d
  • Lahiri, I., Oh, S., Hwang, J.Y., Kang, C., Choi, M., Jeon, H., Banerjee, R., Sun, Y., Choi, W. (2011). Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries. Journal of Materials Chemistry. 21 (35) 13621. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c1jm11474c
  • Das, S., Sudhagar, P., Verma, V., Song, D., Ito, E., Lee, S.Y., Kang, Y.S., Choi, W. (2011). Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells. Advanced Functional Materials. 21 (19) 3729-3736. Wiley-Blackwell. http://dx.doi.org/10.1002/adfm.201101191
  • Lahiri, I., Choi, W. (2011). Interface control: A modified rooting technique for enhancing field emission from multiwall carbon nanotube based bulk emitters. Acta Materialia. 59 (14) 5411-5421. Elsevier BV. http://dx.doi.org/10.1016/j.actamat.2011.05.014
  • Lahiri, I., Das, S., Kang, C., Choi, W. (2011). Application of carbon nanostructures—Energy to electronics. JOM. 63 (6) 70-76. Springer Nature. http://dx.doi.org/10.1007/s11837-011-0095-1
  • Lahiri, I., Verma, V.P., Choi, W. (2011). An all-graphene based transparent and flexible field emission device. Carbon. 49 (5) 1614-1619. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2010.12.044
  • Lahiri, I., Lahiri, D., Jin, S., Agarwal, A., Choi, W. (2011). Carbon Nanotubes: How Strong Is Their Bond with the Substrate?. ACS Nano. 5 (2) 780-787. American Chemical Society (ACS). http://dx.doi.org/10.1021/nn102900z
  • Lahiri, I., Lahiri, D., Jin, S., Agarwal, A., Choi, W. (2011). Carbon nanotubes: how strong is their bond with the substrate?. ACS Nano. 5 (2) 780-7.
  • Choi, H., Kim, H., Hwang, S., Choi, W., Jeon, M. (2011). Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Solar Energy Materials and Solar Cells. 95 (1) 323-325. Elsevier BV. http://dx.doi.org/10.1016/j.solmat.2010.04.044
  • Lahiri, I., Oh, S., Sun, Y., Choi, W. (2011). High specific capacity and excellent stability of interface-controlled MWCNT based anodes in lithium ion battery. Other. 1313 Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2011.1392
  • Verma, V.P., Das, S., Lahiri, I., Choi, W. (2011). Large Area Graphene on Polymer Films for Transparent and Flexible Field Emission Device. Other. 1283 Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2011.801
  • Huang, J., Kim, U., Wang, B., Lahiri, I., Lee, E., Eklund, P., Choi, W. (2011). Controlled Growth of Single-Walled Carbon Nanotubes for Unique Nanodevices. Journal of Nanoscience and Nanotechnology. 11 (1) 262-269. American Scientific Publishers. http://dx.doi.org/10.1166/jnn.2011.3156
  • Huang, J., Kim, U., Wang, B., Lahiri, I., Lee, E., Eklund, P.C., Choi, W. (2011). Controlled growth of single-walled carbon nanotubes for unique nanodevices.. Journal of Nanoscience and Nanotechnology. 11 (1) 262-9.
  • Lahiri, I., Seelaboyina, R., Hwang, J.Y., Banerjee, R., Choi, W. (2010). Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon. 48 (5) 1531--1538. Pergamon.
  • Huang, J., Wang, B., Lahiri, I., Gupta, A.K., Eklund, P.C., Choi, W. (2010). Tuning Electrical Conductance of Serpentine Single-Walled Carbon Nanotubes. Advanced Functional Materials. 20 (24) 4388-4393. Wiley-Blackwell. http://dx.doi.org/10.1002/adfm.201000957
  • Repalle, S., Chen, J., Drozd, V., Choi, W. (2010). The Raman spectroscopic studies of aligned MWCNTs treated under high pressure and high temperature. Journal of Physics and Chemistry of Solids. 71 (8) 1150-1153. Elsevier BV. http://dx.doi.org/10.1016/j.jpcs.2010.03.024
  • Verma, V.P., Das, S., Hwang, S., Choi, H., Jeon, M., Choi, W. (2010). Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire. Other. 171 (1-3) 45-49. Elsevier BV. http://dx.doi.org/10.1016/j.mseb.2010.03.066
  • Lahiri, I., Oh, S., Hwang, J.Y., Cho, S., Sun, Y., Banerjee, R., Choi, W. (2010). High Capacity and Excellent Stability of Lithium Ion Battery Anode Using Interface-Controlled Binder-Free Multiwall Carbon Nanotubes Grown on Copper. ACS Nano. 4 (6) 3440-3446. American Chemical Society (ACS). http://dx.doi.org/10.1021/nn100400r
  • Lahiri, I., Oh, S.W., Hwang, J.Y., Cho, S., Sun, Y.K., Banerjee, R., Choi, W. (2010). High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.. ACS Nano. 4 (6) 3440-6.
  • Verma, V.P., Das, S., Lahiri, I., Choi, W. (2010). Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters. 96 (20) 203108. AIP Publishing. http://dx.doi.org/10.1063/1.3431630
  • Lahiri, I., Seelaboyina, R., Hwang, J.Y., Banerjee, R., Choi, W. (2010). Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon. 48 (5) 1531-1538. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2009.11.064
  • Seelaboyina, R., Lahiri, I., Choi, W. (2010). Carbon-nanotube-embedded novel three-dimensional alumina microchannel cold cathodes for high electron emission. Nanotechnology. 21 (14) 145206. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/21/14/145206
  • Seelaboyina, R., Lahiri, I., Choi, W. (2010). Carbon-nanotube-embedded novel three-Dimensional alumina microchannel cold cathodes for high electron emission.. Nanotechnology. 21 (14) 145206.
  • Wang, B., Gupta, A.K., Huang, J., Vedala, H., Hao, Q., Crespi, V.H., Choi, W., Eklund, P.C. (2010). Effect of bending on single-walled carbon nanotubes: A Raman scattering study. Physical Review B. 81 (11) American Physical Society (APS). http://dx.doi.org/10.1103/physrevb.81.115422
  • Keshri, A.K., Singh, V., Huang, J., Seal, S., Choi, W., Agarwal, A. (2010). Intermediate temperature tribological behavior of carbon nanotube reinforced plasma sprayed aluminum oxide coating. Surface and Coatings Technology. 204 (11) 1847-1855. Elsevier BV. http://dx.doi.org/10.1016/j.surfcoat.2009.11.032
  • Keshri, A.K., Huang, J., Singh, V., Choi, W., Seal, S., Agarwal, A. (2010). Synthesis of aluminum oxide coating with carbon nanotube reinforcement produced by chemical vapor deposition for improved fracture and wear resistance. Carbon. 48 (2) 431-442. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2009.08.046
  • Hwang, S., Vedala, H., Kim, T., Choi, W., Choi, H., Jeon, M. (2010). Fabrication and Electrochemical Characterization of Multi-walled Carbon Nanotube Electrode for Application to Nano-electrochemical sensing. Journal of The Korean Physical Society. 56 (2) 677-681. Korean Physical Society. http://dx.doi.org/10.3938/jkps.56.677
  • Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S. (2010). Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences. 35 (1) 52-71. Informa UK Limited. http://dx.doi.org/10.1080/10408430903505036
  • Lahiri, I., Seelaboyina, R., Choi, W. (2009). Field Emission Response from Multiwall Carbon Nanotubes Grown on Different Metallic Substrates. Other. 1204 Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-1204-k18-21
  • Huang, J., Choi, W. (2008). Controlled growth and electrical characterization of bent single-walled carbon nanotubes. Nanotechnology. 19 (50) 505601. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/19/50/505601
  • Huang, J., Choi, W. (2008). Controlled growth and electrical characterization of bent single-walled carbon nanotubes.. Nanotechnology. 19 (50) 505601.
  • Verma, V., Hoonha Jeon, Sookhyun Hwang, Minhyon Jeon, Wonbong Choi. (2008). Enhanced Electrical Conductance of ZnO Nanowire FET by Nondestructive Surface Cleaning. IEEE Transactions on Nanotechnology. 7 (6) 782-786. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/tnano.2008.2005186
  • Verma, V.P., Kim, D., Jeon, H., Jeon, M., Choi, W. (2008). Characteristics of low doped gallium-zinc oxide thin film transistors and effect of annealing under high vacuum. Thin Solid Films. 516 (23) 8736-8739. Elsevier BV. http://dx.doi.org/10.1016/j.tsf.2008.06.054
  • Vedala, H., Roy, S., Doud, M., Mathee, K., Hwang, S., Jeon, M., Choi, W. (2008). The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes. Nanotechnology. 19 (26) 265704. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/19/26/265704
  • Vedala, H., Roy, S., Doud, M., Mathee, K., Hwang, S., Jeon, M., Choi, W. (2008). The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes.. Nanotechnology. 19 (26) 265704.
  • Kim, D., Jeon, H., Kim, G., Hwangboe, S., Verma, V.P., Choi, W., Jeon, M. (2008). Comparison of the optical properties of undoped and Ga-doped ZnO thin films deposited using RF magnetron sputtering at room temperature. Optics Communications. 281 (8) 2120-2125. Elsevier BV. http://dx.doi.org/10.1016/j.optcom.2007.12.015
  • Seelaboyina, R., Boddepalli, S., Noh, K., Jeon, M., Choi, W. (2008). Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology. 19 (6) 065605. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/19/6/065605
  • Seelaboyina, R., Boddepalli, S., Noh, K., Jeon, M., Choi, W. (2008). Enhanced field emission from aligned multistage carbon nanotube emitter arrays.. Nanotechnology. 19 (6) 065605.
  • Roy, S., Vedala, H., Roy, A.D., Kim, D., Doud, M., Mathee, K., Shin, H., Shimamoto, N., Prasad, V., Choi, W. (2008). Direct Electrical Measurements on Single-Molecule Genomic DNA Using Single-Walled Carbon Nanotubes. Nano Letters. 8 (1) 26-30. American Chemical Society (ACS). http://dx.doi.org/10.1021/nl0716451
  • Jeon, H., Verma, V.P., Hwang, S., Lee, S., Park, C., Kim, D., Choi, W., Jeon, M. (2008). Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method. Japanese Journal of Applied Physics. 47 (1) 87-90. Japan Society of Applied Physics. http://dx.doi.org/10.1143/jjap.47.87
  • Roy, S., Vedala, H., Roy, A.D., Kim, D.H., Doud, M., Mathee, K., Shin, H.K., Shimamoto, N., Prasad, V., Choi, W. (2008). Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes.. Nano Letters. 8 (1) 26-30.
  • Kim, D., Jeon, H., Leem, J., Jeon, M., Verma, V.P., Choi, W., Lee, S.H., Moon, J. (2007). Influence of Grain Size and Room-Temperature Sputtering Condition on Optical and Electrical Properties of Undoped and Ga-Doped ZnO Thin Films. Journal of The Korean Physical Society. 51 (6) 1987. Korean Physical Society. http://dx.doi.org/10.3938/jkps.51.1987
  • Jeon, H., Noh, K., Kim, D., Jeon, M., Verma, V.P., Choi, W., Kim, D., Moon, J. (2007). Low-Voltage Zinc-Oxide Thin-Film Transistors on a Conventional SiO2 Gate Insulator Grown by Radio-Frequency Magnetron Sputtering at Room Temperature. Journal of The Korean Physical Society. 51 (6) 1999. Korean Physical Society. http://dx.doi.org/10.3938/jkps.51.1999
  • Seelaboyina, R., Choi, W. (2007). Recent Progress of Carbon Nanotube Field Emitters and Their Application. Other. 1 (3) 238-244. Bentham Science Publishers Ltd.. http://dx.doi.org/10.2174/187221007782360439
  • Huang, J., Kim, D.H., Seelaboyina, R., Rao, B.K., Wang, D., Park, M., Choi, W. (2007). Catalysts effect on single-walled carbon nanotube branching. Diamond and Related Materials. 16 (8) 1524-1529. Elsevier BV. http://dx.doi.org/10.1016/j.diamond.2006.12.043
  • Jang, W., Choi, S., Lee, S., Shul, Y., Han, H. (2007). Characterizations and stability of polyimide–phosphotungstic acid composite electrolyte membranes for fuel cell. Other. 92 (7) 1289-1296. Elsevier BV. http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.022
  • Jang, W., Shin, D., Choi, S., Park, S., Han, H. (2007). Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films. Polymer. 48 (7) 2130-2143. Elsevier BV. http://dx.doi.org/10.1016/j.polymer.2007.02.023
  • Choi, W., Kim, D., Choi, Y.C., Huang, J. (2007). Y-junction single-wall carbon nanotube electronics. JOM. 59 (3) 44-49. Springer Nature. http://dx.doi.org/10.1007/s11837-007-0038-z
  • Seelaboyina, R., Choi, W. (2007). Recent progress of carbon nanotube field emitters and their application.. Other. 1 (3) 238-44.
  • Kim, D., Huang, J., Shin, H., Roy, S., Choi, W. (2006). Transport Phenomena and Conduction Mechanism of Single-Walled Carbon Nanotubes (SWNTs) at Y- and Crossed-Junctions. Nano Letters. 6 (12) 2821-2825. American Chemical Society (ACS). http://dx.doi.org/10.1021/nl061977q
  • Vedala, H., Huang, J., Zhou, X.Y., Kim, G., Roy, S., Choi, W.B. (2006). Effect of PVA functionalization on hydrophilicity of Y-junction single wall carbon nanotubes. Applied Surface Science. 252 (22) 7987-7992.
  • Kim, D.H., Huang, J., Shin, H.K., Roy, S., Choi, W. (2006). Transport phenomena and conduction mechanism of single-walled carbon nanotubes (SWNTs) at Y- and crossed-junctions.. Nano Letters. 6 (12) 2821-5.
  • Kim, D., Huang, J., Rao, B.K., Choi, W. (2006). Pseudo Y-Junction Single-Walled Carbon Nanotube Based Ambipolar Transistor Operating at Room Temperature. IEEE Transactions on Nanotechnology. 5 (6) 731-736. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/tnano.2006.885028
  • Kim, D., Huang, J., Rao, B.K., Choi, W. (2006). Nonlinear characteristics of pseudo-Y-junction single-walled carbon nanotubes. Journal of Applied Physics. 99 (5) 056106. AIP Publishing. http://dx.doi.org/10.1063/1.2179134
  • Roy, S., Vedala, H., Choi, W. (2006). Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology. 17 (4) S14-S18. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/17/4/003
  • Roy, S., Vedala, H., Choi, W. (2006). Vertically aligned carbon nanotube probes for monitoring blood cholesterol.. Nanotechnology. 17 (4) S14-8.
  • Huang, J., Rao, B.K., Vedala, H., Kim, D., Jeon, M., Park, W., Choi, W. (2006). Controlled Carbon Nanotube Networks and its Corresponding Channel Effect at High Bias. Other. 963 Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-0963-q10-51
  • Verma, V.P., Kim, D., Jeon, M., Choi, W. (2006). Fabrication and Characteristics of Low Doped Gallium-Zinc Oxide Thin Film Transistor. Other. 963 Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-0963-q12-01
  • Choi, Y.C., Choi, W. (2005). Synthesis of Y-junction single-wall carbon nanotubes. Carbon. 43 (13) 2737-2741. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2005.05.020
  • Vedala, N.H., Choi, Y.C., Zhou, X.Y., Kim, G., Choi, W. (2004). Polymer Functionalized Carbon nanotubes for sensor application. Other. 858 Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-858-hh13.22
  • Yi, W., Yu, S., Lee, W., Han, I.T., Jeong, T., Woo, Y., Lee, J., Jin, S., Choi, W., Heo, J., Jeon, D., Kim, J. (2001). Secondary electron emission yields from MgO deposited on carbon nanotubes. Journal of Applied Physics. 89 (7) 4091-4095. AIP Publishing. http://dx.doi.org/10.1063/1.1351862
  • Chu, J., Jeong, K., Bae, E., Yoo, I., Choi, W., Kim, J. (2001). Electrical Property of Vertically Grown Carbon Nanotube and its Application to the Nanofunctional Devices. Other. 675 Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-675-w9.3.1
  • Yoo, I.K., Moon, C., Choi, W., Kim, S., Bae, E., Chung, S. (2001). Feasibility studies on pyroelectric emission for lithography application. Integrated Ferroelectrics: An International Journal. 41 (1-4) 17-24. Informa UK Limited. http://dx.doi.org/10.1080/10584580108012803

Contracts, Grants and Sponsored Research

    Contract

  • choi, w. (Principal), "Advanced rechargeable batteries performance test," sponsored by Hunt Energy, Private, $28435 Funded. (2021 - 2022).
  • Choi, W., "UNT-PROVIDED/INCOMING SERVICE Contract," sponsored by Ark Power Tech Co, National, $25965 Funded. (2019 - 2020).
  • Young, M.L. (Co-Principal), Choi, W. (Principal), Shi, S.Q. (Co-Principal), "High efficiency Zn-ion battery by additive manufacturing," sponsored by UNT AMMPI, University of North Texas, $30000 Funded. (2018 - 2019).
  • Choi, W., "UNT-PROVIDED/INCOMING SERVICE Contract," sponsored by Ark Power Tech Co, National, Funded. (2019 - 2020).
  • Grant - Research

  • Choi, W., "Development of surface stabilized Zn-anode in Zn-air battery," sponsored by MOTIE Korea/MPS Korea, Federal, $350000 Funded. (2022 - 2025).
  • choi, w., "Co-development of rechargeable Zinc-based batteries," sponsored by HUNT Energy Enterprises, Private, $32560 Funded. (2023 - 2023).
  • Choi, W. (Principal), Jiang, Y. (Co-Principal), "• 3D printed multifunctional structure in advanced vehicle for in-situ vehicle health monitoring," sponsored by DOE, Federal, $405000 Funded. (2020 - 2023).
  • Choi, W., Prasad, V. (Other), "High-Energy, High-Performance Li-S Battery with Novel 2D- & 3D-Nanostructured Electrodes," sponsored by Ark Power Tech Corporation/NAVAIR, Federal, $121998 Funded. (2022 - 2023).
  • choi, w. (Principal), prasad, v. (Co-Principal), "High-Performance Li-S Battery with Novel 2D- & 3D-Nanostructured Electrodes,," sponsored by NAVAIR, State, $121998 Funded. (2021 - 2022).
  • Choi, W. (Principal), "Robust 2D-TMDs Synaptic Devices for Low-Power Consumption Neuromorphic Computing by Organized Interfaces," sponsored by ARMY, National, $5000 Funded. (2021 - 2022).
  • Choi, W. (Principal), Mahbub, I. (Co-Principal), "Self-powered Wireless Sensors and Interfaces for UAVs," sponsored by University of North Texas, Federal, $211786 Funded. (2021 - 2022).
  • Choi, W. (Principal), Mehta, G. (Co-Principal), "REU supplement - Flexible wireless joint sensing system for knee arthroplasty," sponsored by NSF, Federal, $10000 Funded. (2021 - 2022).
  • Choi, W., "Charge Transport in Two-Dimensional Materials Based Integrated Flexible Energy System," sponsored by Air Force Office of Scientific Research, Federal, $151144 Funded. (2020 - 2022).
  • Choi, W. (Principal), Mehta, G. (Co-Principal), "Eager: Flexible wireless joint sensing system for knee arthroplasty," sponsored by NSF, Federal, $150000 Funded. (2019 - 2021).
  • choi, w. (Principal), Prasad, V. (Other), "Integrated Flexible Energy System based on Two-Dimensional (2D) Materials," sponsored by US AFOSR, Federal, $300000 Funded. (2018 - 2021).
  • Choi, W. (Principal), "Development of surface stabilized Zn-anode in Zn-air battery," sponsored by KITECH, International, $60000 Funded. (2019 - 2020).
  • choi, w., "NAiEEL Technology gift funds," sponsored by NAiEEL Technology, Private, $10000 Funded. (2017 - 2019).
  • choi, w., "Bio-electronic Computing based on Nano-engineered Materials," sponsored by OFFICE OF RESEARCH AND ECONOMIC DEVELOPMENT, University of North Texas, $10000 Funded. (2018 - 2018).
  • choi, w. (Co-Principal), "Multi-functional nano coatings for anti-corrosion and friction-reduction," sponsored by UNT-AMMPI, University of North Texas, $15000 Funded. (2016 - 2017).
  • choi, w. (Principal), "High Performance Energy Storage devices based Nanomaterials," sponsored by AMMPI, Local, $10000 Funded. (2015 - 2016).
  • choi, w. (Principal), "Study of Interfacial Bonding of Graphene/Substrate for an Efficiency Heat Pad in Nanoelectronic Device," sponsored by SRC, International, $145000 Funded. (2014 - 2016).
  • choi, w. (Principal), "High Efficiency Flexible Rechargeable Battery based on 3D Graphene-Carbon Nanotubes," sponsored by KIER, International, $100000 Funded. (2015 - 2016).
  • choi, w. (Principal), "3D Carbon Nanomaterials towards High Efficiency Energy Storage," sponsored by KIST, International, $100000 Funded. (2013 - 2015).
  • Choi, W. (Principal), Jiang, Y. (Co-Principal), "3D Printed Multifunctional Structure in Advanced Vehicle for In-situ Vehicle Health Monitoring," sponsored by Oak Ridge National Laboratory DOE, FED, Funded. (2020 - 2023).
  • Choi, W. (Principal), Jiang, Y. (Co-Principal), "� 3D printed multifunctional structure in advanced vehicle for in-situ vehicle health monitoring," sponsored by DOE, Federal, Funded. (2020 - 2023).
  • Choi, W. (Principal), "Robust 2D-TMDs Synaptic Devices for Low-Power Consumption Neuromorphic Computing by Organized Interfaces," sponsored by U.S. Army Research Laboratory, FED, Funded. (2021 - 2022).
  • Zhu, D. (Co-Principal), Mehta, G. (Co-Principal), Choi, W. (Principal), "EAGER: Flexible wireless joint sensing system for knee arthroplasty," sponsored by National Science Foundation, FED, Funded. (2019 - 2022).
  • Mahbub, I. (Co-Principal), Choi, W. (Principal), "Self-powered Wireless Sensors and Interfaces for UAV's," sponsored by U.S. Department of Defense, FED, Funded. (2021 - 2022).
  • Choi, W. (Principal), "Charge Transport in Two-Dimensional Materials Based Integrated Flexible Energy System," sponsored by Air Force Office of Scientific Research, FED, Funded. (2021 - 2022).
  • Choi, W. (Principal), "Advanced rechargeable batteries performance test," sponsored by Hunt Energy Enterprises, LLC, IND, Funded. (2021 - 2022).
  • Choi, W. (Principal), "Integrated Flexible Energy System based on Two-Dimensional (2D) Materials," sponsored by Asian Office of Aerospace Research, FED, Funded. (2018 - 2022).
  • Choi, W. (Principal), "Development of surface stabilized Zn-anode in Zn-air battery," sponsored by Korea Institute of Industrial Technology, OG, Funded. (2019 - 2020).
  • Choi, W. (Principal), "High Efficiency Flexible Rechargeable Battery Based on 3D Graphene-Carbon Nanotubes," sponsored by Korea Institute of Energy Research, OG, Funded. (2015 - 2015).
  • Choi, W. (Principal), "3D Carbon Nanomaterials Towards High Efficiency Energy Storage," sponsored by Korea Institute of Science & Technology, OG, Funded. (2013 - 2015).
  • Grant - Service

  • Choi, W., "Gift fund for new material development," sponsored by NanoSD, Private, $20000 Funded. (2020 - 2020).
  • Choi, W., "Gift fund for new material development," sponsored by NanoSD, Private, Funded. (2020 - 2020).
  • Sponsored Research

  • Choi, W., "WFM Inc. gift funds," Private, $10000 Funded. (2018 - 2019).
  • Choi, W., "Gift Funds," sponsored by NAiEEL Technology, International, $6700 Funded. (2017 - 2018).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE