OBSERVATION & MEASUREMENT of BEHAVIOR & ENVIRONMENT

FALL 2014

Instructor:

Dr. Jesús Rosales-Ruiz
Room 360 J Chilton
Phone: (940) 565-2559
e-mail: JRR@UNT.EDU

Office Hours:
Room 360 J Chilton
M - R 11:00-12:30 P.M.
& by appointment

Time And Place:

Tuesday, 6:00-8:50 PM. Lang 214

Course Description:

In this course you will learn to design observational systems to monitor behavior over time. You will learn about behavior as a scientific subject matter, how to write behavioral definitions, how to use several recording systems, how to choose recording systems, how to assess the measurement system, and how to read and display data into tables and graphs.

Course Objectives:

1. Students will be able to distinguish behavioral from non-behavioral measures of behavior.
2. Students will be able to distinguish topographical from functional and phenomenal definitions of behavior.
3. Students will be able to write behavior definitions amenable to measurement operations.
4. Students will be able to design data collection systems for measurement of a variety of behaviors and environmental conditions.
5. Students will be able to read, display and describe data on tables and graphs.
6. Students will be able to choose appropriate recording systems and graphs for given observation situations.
7. Students will be able to assess the accuracy and reliability of measurement systems.
Textbooks:

You can order the book from BRCO (see website below). Also order a Celeration Finder (Code: CT-CFM-4 Price: $4.00). You will find it in the link Standard Celeration Tools:

http://www.behaviorresearchcompany.com/

Reading packet: You can obtain your readings from Copypro. Ask for BEHV 5000: Observation and Measurement of Behavior and Environment.

Materials:

Clipboard, stopwatch with alarm, wrist counter, calculator, ruler, SCC and graphing paper.

Topics and Readings

Week 1: Introduction

Week 2: Basic Issues of Measurement

Week 3: Behavior as a Scientific Datum

Week 4: Definition and Measurement of Behavior

Week 5: Behavioral Definitions

Week 6: Dimensional Quantities and Units of Measurement

Week 7: Observing and Recording

Week 8: Frequency and Duration Recording

Week 9: Frequency as a Fundamental Datum

Week 10: Interval Recording

Week 11: Sampling procedures

Week 12: Scatterplots and PLA-Check

Standard and fill the frame charts and percent correct charts and dangers (pp. 57-76). Graf, S., & Lindsley, O. (2002).

Week 13: Assessing Measurement

Varieties of standard celeration charts and charts from generated data sets (pp. 77-95). Graf, S., & Lindsley, O. (2002).

Student Activities

Discussion Questions

Students will write discussion questions about a particular issue addressed in each of the readings. Your questions may challenge or praise the usefulness of the facts, concepts, and analyses presented in the readings; they may also relate the reading to other issues and topics relevant to this course.

Assignments and in-class exercises

Students will define behaviors, record behavior with five different observational systems (frequency, interval, time-sampling, checklists, and scatterplots), calculate the reliability of their observations, make and read scatterplots of behavior, cumulative records, standard celeration and linear graphs.
Analysis of Behavioral Definition and Recording Procedures
Students will select a behavior from JABA and describe the ways it has been defined and measured.

Design of an Observational System
Students will design a complete observation system for at least two behaviors as part of their final test. The observation system is due on the day of the final exam.

Self-Observational Project
Students will design and carry out a complete observational system to measure a behavior of their own. They will write a report including a definition of the behavior, data sheets, observational and reliability procedures, a table of the data, a graph of the data, and a description of the data.

PLA-Check Project
Students will apply the PLA-check to monitor the behavior of several individuals in the natural environment. They will write a report including a definition of the behavior, data sheets, observational and reliability procedures, a table of the data, a graph of the data, and a description of the data.

Charting Project
Students will select a data set from a publicly available source. This data should span the course of at least one decade. Students will graph, analyze and describe this data set.

Vocabulary and Terms Exam
Students will be tested, at the end of the semester, on the key definitions and procedures learned during the course. The test will consists of showing the final performance from the SAFMEDS learning project. Part of the test includes the chart used to monitor the SAFMEDS performance and a description of what the chart shows.
Grades

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>% of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Discussion questions</td>
<td>15%</td>
</tr>
<tr>
<td>2. Assignments and in-class exercises</td>
<td>15%</td>
</tr>
<tr>
<td>3. Analysis of Behavioral Definition and Recording</td>
<td>10%</td>
</tr>
<tr>
<td>4. Design of an Observational System</td>
<td>10%</td>
</tr>
<tr>
<td>5. Self-Observational Project</td>
<td>10%</td>
</tr>
<tr>
<td>6. PLA-Check Project</td>
<td>10%</td>
</tr>
<tr>
<td>7. Charting Project</td>
<td>10%</td>
</tr>
<tr>
<td>8. Vocabulary and Terms Exam (SAFMEDES)</td>
<td>20%</td>
</tr>
</tbody>
</table>

ADA Statement:

The Department of Behavior Analysis, in cooperation with The Office of Disability Accommodation, complies with the Americans with Disabilities Act. Please present your written accommodation request to me before the 4th class meeting.