CSCE 5160 Parallel Processing

You May Want To Know

My Name: Krishna M. Kavi
My Office: F278
My Phone Number: 940-369-7216
My Office Hours: T/Th: 11:00-12:00 am
 Tues: 3:00-5:00pm
My Email: kavi@cse.unt.edu
Grader:

Tentative Breakdown of Course Grade

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mid-semester exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final</td>
<td>25%</td>
</tr>
<tr>
<td>Homework/programming</td>
<td>20%</td>
</tr>
<tr>
<td>Term Project</td>
<td>25%</td>
</tr>
<tr>
<td>Discretion</td>
<td>5%</td>
</tr>
</tbody>
</table>

The course is designed to introduce issues involved in parallel programming along with some analysis of parallel algorithms. Programming exercises will involve the use of MPI, OpenMP, Cuda, OpenCL and/or Pthreads.

Prerequisites: Programming in C, C++, Understanding of Single CPU systems, Data Structures, Algorithms, Unix.
CSCE 5160 Parallel Processing
Course Outline

1. Introduction
 Motivation
 Multiprocessor architectures, Networking
 Levels of parallelism
 3 hours

2. Performance Models
 Performance and Speedup
 Scalability models
 3 hours

3. Communication and Coordination
 Communication models
 Synchronization models
 Analyzing communication overhead
 Analyzing synchronization overhead
 4 hours

4. Parallel Programming
 Message passing and Shared memory
 Using MPI, OpenMP, Pthreads, CUDA, OpenCL
 6 hours

5. Parallel Algorithm Design
 Task level and data level decomposition
 3 hours

6. Matrix Algorithms
 Matrix inverse
 Matrix-Vector multiplication
 Matrix Multiplication
 6 hours

7. Solving Linear Systems
 Iterative methods
 Conjugate Gradient Method
 4 hours

8. Sorting
 Parallel sorting
 Parallel search
 6 hours

9. Graph Algorithms
 Spanning trees
 Shortest paths
 4 hours

10. Search and optimizations
 Load balancing
 Termination
 4 hours

Text:
A. Grama, A. Gupta, G. Karypis and V. Kumar. Introduction to Parallel Computing

Other Useful Books:
2. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming
3. J. Dongarra (Editor) The Sourcebook of Parallel Computing
4. Michael Quinn: Parallel Programming in C with MPI and OpenMP
5. M. Snir and W. Gropp. MPI: The Complete Reference
6. B. Chapman. Using OpenMP: Portable Shared Memory Parallel Programming