CSCE 6610 Advanced Computer Architecture
Multicore and Many Core Processors

You May Want To Know

Instructor: Krishna M. Kavi
My Office: F 278
My Phone: 940-369-7216
My Email: kavi@cse.unt.edu
My Home Page: http://www.csrl.unt.edu/~kavi/
My Office Hours: T/Th: 11:00-12:00 am

Tentative Grading Policy

- Mid-Semester Exam 15%
- Final Exam 15%
- Assignments 30%
- Project 30%
- Discretion 10%

Remarks.

1. This is an advanced level course and requires each student to read papers on current research, write reports on papers read, as well as actively participate in discussions in class. The discretion portion of the grade will be based on your participation, initiative and motivation to look for additional material related to the course.

2. While grading examinations, I grade one problem at a time. That is, I read through each student’s answer for a problem, give the highest score (need not be the maximum) to the best solution, and assign scores for the rest based on how well their solution compares with the best.

3. For grading purposes, assignments consist of reading papers and writing critiques of the contents.

4. For class project, you may write a simulator with specific architectural features or work with our multithreaded dataflow simulator; You may also consider investigating one or more of multithreaded systems, check into obtaining the software, install on local systems, write simple programs and then write a report describing the strengths and weakness of the systems you have investigated. I am open to other suggestions as well. I am open to other possibilities also. Note that since the project carries 30% of the grade, the project must involve significant effort.

5. The instructor reserves the right to modify course policies, the course contents and the order in which the topics are covered.

6. All students will be trusted to pursue their academic careers with honesty and integrity. Academic dishonesty includes, but not limited to, cheating on a test or other course work, plagiarism, unauthorized collaboration with other persons. Students found guilty of dishonesty will be subject to penalties that may include suspension from the university.
CSCE 6610 Advanced Computer Architecture

Course Outline

1. Introduction and background
   Why the trend towards multicore
   How to measure performance
   Power management techniques
   
   Conventional architectures
   In-order and Out-of-order
   Branch Prediction and Speculative Execution
   Cache memories
   
3. Multicore and Many Core CPUs
   Challenges and future
   Single thread performance
   Programming
   Shared LLC
   Memory models for multithreading
   
4. Back to Future
   Core fusion
   Improving single thread performance
   
5. Non-Uniform Accesses and NUCA
   Optimizing cache performance
   Shared and coherence issues
   
6. Power Management Techniques
   Voltage and Frequency Scaling
   Scheduling and software techniques
   
7. Scheduling and Load Balancing in Multicore
   Dynamic and Static techniques
   Work Stealing
   
8. Student Presentations

Hours
3
3
6
6
6
6
6
3