Introduce the principal methods for characterizing materials at all scales (from nano to micro) in terms of atomic composition, atomic structure and chemical bonding. During this course, Students are presented with the basic operation and capabilities of the principal characterization methods used in materials science. This course applies basic science concepts to develop a fundamental understanding of materials characterization methods that are fundamental for graduate research and employment in the area of materials design.

Professor: El Bouanani
Office: E-111 Research Park Phone: 940-369-8109 E-Mail: bouanani@unt.edu
Office Hours: Tuesday 9 AM – 11 AM
Class Hours: M/W 12:30-1:50 PM Class Location: B157

Textbook: The Instructor will supply handouts and references.
Course notes for each class (PPT files) will be e-mailed to students

Suggested text books:
• Microstructural Characterization of Materials, David Brandon and Wayne Kaplan, Wiley

Homework: Five homework sets will be assigned and graded. The purpose of the homework is to aid in learning the material. Although some collaboration among students in preparing the homework is acceptable, the main work should be primarily yours. Late homework will not be accepted.

Exams: There will be three examinations and one student project:
Midterm-I: October 5th
Midterm-II: November 9th
Comprehensive final Exam: December 7th
Student’s projects are assigned on November 2nd and are due on November 23rd
Project presentations are scheduled to start on November 23rd.

Grading:
(1) Homework (5 total) 20%
(2) Quizzes 10%
(3) Student project 10%
(4) Midterm Exam-I + Midterm Exam-II 30%
(5) Comprehensive Final Exam 30%

1. Quizzes are closed-book. Pop-up quizzes will not be announced.
2. Final exam will cover all chapters
3. Attendance of the class is required. If you are going to miss class, notify me.
4. Unethical conduct on quizzes or exams will automatically lead to failure of the course.
5. Use of laptops, iPads and cell phones is not allowed during class.
Course Topics (*Subject to Change*)

- Syllabus overview/General Introduction to Characterization
- Brief overview of Materials depositions and vacuum Technology

- Overview of X-ray, electron and ion sources

- **Spectroscopies Using Photon and Ion Probes**
 - Photon interactions with matter
 - X-Ray Fluorescence
 - X-ray absorption in materials
 - Instrumentation
 - Elemental identification and quantification
 - Basic principles
 - Instrumentations
 - Chemical identification and quantification
 - Examples and applications
 - X-ray Photoelectron Spectroscopy/UV Photoelectron Spectroscopy
 - Basic principles
 - Instrumentations
 - Chemical identification and quantification
 - Examples and applications
 - Fourier Transform Infra-Red and Raman
 - Basic principles
 - Examples and applications
 - Ion interactions with matter
 - Rutherford Backscattering Spectroscopy
 - Basic principles
 - Instrumentations
 - Atomic Collisions and Backscattering
 - Energy Loss and Backscattering Profiles
 - Examples and applications
 - Secondary Ion Mass Spectroscopy
 - Basic principles
 - Instrumentations
 - Sputtering processes
SYLLABUS
MTSE-3020: Microstructure and Characterization of Materials
Department of Materials Science and Engineering Fall 2015

- Examples and applications
 - Examples and comparison of various spectroscopies in applications

- Topics on Optical microscopy
 Metallographic Preparation Techniques
 Resolution (Rayleigh criterion, pixel counts)
 Contrast Formation
 Digital Imaging
 Image Quantification – Stereology
 Examples of optical microscopy in applications

- Topics on Electron microscopy
 Basics of electron sources and vacuum
 Signal types (SE, BSE)
 Energy Dispersive Spectroscopy (EDS)
 How TEM fundamentally differs
 Examples of electron microscopy in applications

- Topics on X-ray diffraction
 Bragg’s Law
 Structure Factor
 Powder diffraction
 Textured diffraction
 Examples of X-Ray diffraction in applications

Course Goal:
The emphasis of this course will be on techniques utilizing X-ray, electron and ion probes.

Relationship to program Objectives:
(a) An ability to apply knowledge of mathematics, science, and engineering.
(e) An ability to identify, formulate, and solve engineering problems.
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Prepared by: El Bouanani Date: August 24, 2015