CSCE 4610: Computer Systems Architecture

Instructor: Song Fu
My Office: F250 Discovery Park
My Phone: 940-565-2341
My Email: song.fu@unt.edu
My Web: http://www.cse.unt.edu/~song/
My Office Hours: Tuesdays 10:00-11:00am

TA: Venkata Yanambaka
(VenkataPrasanthYanambaka@my.unt.edu)
TA Office Hours: Mondays 10:00am-12:00pm

<table>
<thead>
<tr>
<th>Tentative Breakdown Of Course Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Mid Semester Exams</td>
</tr>
<tr>
<td>Final</td>
</tr>
<tr>
<td>Homework Assignments</td>
</tr>
<tr>
<td>Term Project</td>
</tr>
<tr>
<td>Discretion</td>
</tr>
</tbody>
</table>

Prerequisites: CSCE 2610, CSCE 3612 or CSCE 3600

Primarily, you should know how a basic CPU works, assembly language programing in MIPS (or ARM) instruction, memory organization, ALU (including multiplication, division and floating point algorithms), and some understanding of compilers and runtime support, Operating system concepts like process scheduling, virtual memory, protection domains, etc.

Exams and Grading Policies: All exams (mid-semester and final) are "open-book" format. The final exam is not comprehensive. Every exam will be graded using a "relative point" system. For each problem, the best among all the solutions presented by the students (which gets the highest grade) will be selected and all the others will be graded relative to the best solution.

ABET Course Outcomes for CSCE 4610

1. Apply metrics to evaluate performance and power requirements of modern computer systems. Represent performance using arithmetic, harmonic and geometric means.
2. Understand Amdahl’s law as applied to a single core and multicore systems.
3. Design a pipelined processor to meet design specifications.
5. Understand cache memory performance issues.
6. Understand cache memory issues in multicore systems include cache coherency management.
7. Understand hardware support for concurrency including multithreading, locks and barriers.
CSCE 4610: Computer Systems Architecture

Course Outline
Course materials are on Blackboard

1. Introduction and Background 6
 What is computer architecture
 Instruction sets, control unit
 Performance evaluation

2. Memory Systems 10
 Memory hierarchy
 Cache memory designs
 Improving cache performance
 Main memory and Virtual memory
 DRAM and SSD technologies

3. Pipeline and out of order execution 10
 Basic design of pipelines
 Data and control hazards
 Branch prediction and dynamic scheduling
 Superscalar and multiple issue processors
 VLIW or EPIC

4. Shared Memory Multiprocessors 8
 Mutual Exclusion and Synchronization
 Cache Coherency Problem and Solutions
 Distributed Shared Memory Systems

5. Dataflow and multithreaded architectures 6
 Dataflow model of computation
 What is multithreading Scheduled Dataflow
 SMT and Hyper Threading

6. Low Power Issues 4

Other Useful Books: