Syllabus for MTSE 4040 Computational Materials Science

Course Number: MTSE 4040 Computational Materials Science
Time: Tuesday 2:30PM - 5:20pm
Classroom: Discovery Park D207B
Dates: Jan 17, 2017 - May 15, 2017
Instructors: Dr. Jincheng Du, Dr. Zhenhai Xia

Course Summary
Computational materials modeling has emerged as an increasingly important branch of materials science due to the evolution of modeling frameworks, invention of novel numerical algorithms, and increased computer capability. As a consequence, modeling and simulation are emerging as powerful complementary approaches to experiment and traditional theory. The aims of this course are to: (i) introduce students to materials modeling and simulation techniques that cover a wide time and length scales; (ii) show how these modeling methods can be used to understand fundamental material structure, material defects and the relationships between material structure and material behavior; and (iii) develop an understanding of the assumptions and approximations that are involved in the modeling frameworks at the various time and length scales. Students will be introduced to the basis for the simulation techniques, learn how to use computational modeling, and how to present and interpret the results of simulations. The students will work with simulation modules to reinforce concepts learned in the lectures.

Course Requirements
Introduction to Materials Science or an equivalent course. Prior computer programming knowledge is NOT a prerequisite.

Grading
Class participation (10%)
Class projects (50%)
Course project (40%)

Class projects: The class projects include two modules, in which class projects are signed. Students are expected to have a laptop to run their simulations. We will use open-source codes for simulations visualization of results. Please download the executable for two codes from sources provided in the classes on your laptops.

After the projects are completed, the students are required to write project reports summarizing his or her work on their class project modeling. This report must be typed, single spaced, 12 point Symbol and/or Times New Roman fonts, and with 1-inch margins around. The report will follow the style of a standard laboratory report and must include the following sections: Title, Author and affiliation, Abstract, Introduction (of the method used and properties calculated), Results, Discussions (comparing the results from simulations with corresponding experimental values, or theory), Conclusions, and References. You must include appropriate visual figures from the simulations (including charts and graphs, and material structures). All the legends and labels in the charts and graphs must be at least a 12-point font when scaled to fit to the report. CAUTION: follow the timeline above; pace your effort and don’t wait until the deadline.
Course project: it includes a literature review (minimum seven pages, double space) and a final presentation on a selected area of computational material science. The topic is picked in consultation with one of the instructors and can be related to current research work you are carrying out. Detailed instruction of the course project will be given in the class.

Deadlines
• March 7 – turn in the first project report in Module one
• April 18 – turn in the second project report in Module two
• March 20 – choose the topic of Course project after consultation with instructors
• April 25 – turn in the review report

Codes to be provided
Each student is required to bring his/her laptop to install the codes needed for class projects
• PUTTY and SSH file exchange (for remote computing cluster access)
• The following codes will be used in course project:
 o VASP code for DFT simulations
 o LAMMPS code for MD simulation
 o ABAQUS code for FEA simulation

Lecture schedule:

1. General introduction and overview; (Instructor: Dr. Xia)
 Week 1: Introduction (1/17)

2. Atomistic Modeling Module (Instructor: Dr. Jincheng Du)
 Week 2: Introduction to atomistic simulations (1/24)
 Week 3: Basics of quantum mechanical methods (1/31)
 Week 4: Density function theory and application to solid materials (2/7)
 Week 5: Interatomic Potentials for atomistic simulations (2/14)
 Week 6: Molecular mechanics simulations (2/21)
 Week 7: Molecular dynamics simulations (2/28)

3. Continuum Modeling Module (Instructor: Dr. Zhenhai Xia)
 Week 8: Introduction to continuum mechanics (3/7)
 Week 9: No Class (Spring break) (3/14)
 Week 10: Introduction to computational methods (3/21)
 Week 11: Introduction to finite element method (ABAQUS) (3/28)
 Week 12: Finite element modeling of materials deformation (4/4)
 Week 13: Finite element modeling of materials failure (4/11)
 Week 14: Class Project (4/18)

4. Course project (Instructors: Dr. Zhenhai Xia, Dr. Jincheng Du)
 Week 15: Course project presentations (4/25)
 Week 16: Course project presentations (5/2)