Dr. Bishnu Sarker
Assistant Professor
University of North Texas
Department of Information Science
Email: Bishnu.Sarker@unt.edu
Education
-
PhD, University of Lorraine, 2021
Major: Computer Science
Dissertation: "On Graph-Based Approaches for Protein Function Annotation and Knowledge Discovery" -
MS, Paris VI University, 2016
Major: Computer Science
Specialization: Data Learning and Knowledge
-
BS, Khulna University of Engineering & Technology, 2011
Major: Computer Science and Engineering
Professional Positions
- Assistant Professor of Health Informatics, University of North Texas. University of North Texas. (2025 - Present).
- Assistant Professor, Meharry Medical College. Meharry Medical College. (2021 - 2025).
- Assistant Professor, Khulna University of Engineering & Technology. Khulna University of Engineering & Technology. (2021 - 2021).
- Lecturer, Khulna University of Engineering & Technology. Khulna University of Engineering & Technology. (2011 - 2014).
Academic - Post-Secondary
Teaching
Teaching Experience
- HINF 5639 - Population Health Informatics, 1 course.
- INFO 4365 - Health Sciences Information Management, 1 course.
University of North Texas
Research
Published Intellectual Contributions
- Shishir, F.S., Sarker, B., Rahman, F., Shomaji, S. (2023). MetaLLM: Residue-Wise Metal Ion Prediction Using Deep Transformer Model. Lecture Notes in Computer Science. 42-55. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-34960-7_4
- Sarker, B., Ritchie, D., Aridhi, S. (2019). Functional Annotation of Proteins using Domain Embedding based Sequence Classification. Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. 163-170. SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0008353401630170
- Shishir, F.S., Sarker, B., Rahman, F., Shomaji, S. (2025). A Deep Learning Framework for Protein-to-Metal Binding Prediction Using Protein Language Models. Other. 1-12. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tcbbio.2025.3595446
- Stephens, D.C., Mungai, M., Crabtree, A., Beasley, H.K., Garza-Lopez, E., Vang, L., Neikirk, K., Vue, Z., Vue, N., Marshall, A.G., Turner, K., Shao, J., Sarker, B., Murray, S., Gaddy, J.A., Davis, J., Damo, S.M., Hinton, A.O. (2023). Protocol for isolating mice skeletal muscle myoblasts and myotubes via differential antibody validation. Other. 4 (4) 102591. Elsevier BV. https://doi.org/10.1016/j.xpro.2023.102591
- Stephens, D.C., Crabtree, A., Beasley, H.K., Garza‐Lopez, E., Mungai, M., Vang, L., Neikirk, K., Vue, Z., Vue, N., Marshall, A.G., Turner, K., Shao, J., Sarker, B., Murray, S., Gaddy, J.A., Hinton, A.O., Damo, S., Davis, J. (2023). In the Age of Machine Learning Cryo‐EM Research is Still Necessary: A Path toward Precision Medicine. Other. 7 (8) Wiley. https://doi.org/10.1002/adbi.202300122
- Sarker, B., Khare, N., Devignes, M., Aridhi, S. (2022). Improving automatic GO annotation with semantic similarity. BMC Bioinformatics. 23 (S2) Springer Science and Business Media LLC. https://doi.org/10.1186/s12859-022-04958-7
- Veras, M.B., Sarker, B., Aridhi, S., Gomes, J.P., Macêdo, J.A., Nguifo, E.M., Devignes, M., Smaïl-Tabbone, M. (2022). On the design of a similarity function for sparse binary data with application on protein function annotation. Knowledge-Based Systems. 238 107863. Elsevier BV. https://doi.org/10.1016/j.knosys.2021.107863
- Sarker, B., Ritchie, D.W., Aridhi, S. (2020). GrAPFI: predicting enzymatic function of proteins from domain similarity graphs. BMC Bioinformatics. 21 (1) Springer Science and Business Media LLC. https://doi.org/10.1186/s12859-020-3460-7
- Belhouachi, N., Xochelli, A., Boudjoghra, M., Lesty, C., Cassoux, N., Fardeau, C., Tran, T.H., Choquet, S., Sarker, B., Houillier, C., Alentorn, A., LeHoang, P., Soussain, C., Touitou, V., Merle-Beral, H., Hoang-Xuan, K., Bodaghi, B., Stamatopoulos, K., Davi, F. (2020). Primary vitreoretinal lymphomas display a remarkably restricted immunoglobulin gene repertoire. Blood Advances. 4 (7) 1357-1366. American Society of Hematology. https://doi.org/10.1182/bloodadvances.2019000980