Skip to main content

Bunyamin Sari

Title: Associate Professor

Department: Mathematics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, University of Alberta, 2003
    Major: Mathematics
    Dissertation: Asymptotic structures in Banach spaces
  • BS, Bogazici University, Istanbul, 1997
    Major: Mathematics

Current Scheduled Teaching

MATH 3410.003Differential Equations ISpring 2025 Syllabus
MATH 6150.001Functional AnalysisSpring 2025 Syllabus

Previous Scheduled Teaching

MATH 3410.003Differential Equations IFall 2024 Syllabus SPOT
MATH 3740.001Vector CalculusFall 2024 Syllabus SPOT
MATH 3410.003Differential Equations ISpring 2024 Syllabus SPOT
MATH 3410.003Differential Equations IFall 2023 Syllabus SPOT
MATH 5900.730Special ProblemsFall 2023
MATH 6900.001Special ProblemsFall 2023
MATH 6150.001Functional AnalysisSpring 2023 SPOT
MATH 5900.720Special ProblemsSpring 2023
MATH 6950.713Doctoral DissertationFall 2022
MATH 5000.002Instructional Issues for the Professional MathematicianFall 2022 Syllabus SPOT
MATH 5900.703Special ProblemsSummer 5W1 2022
MATH 6950.724Doctoral DissertationSpring 2022
MATH 5120.001Introduction to AnalysisSpring 2022 SPOT
MATH 5900.704Special ProblemsSpring 2022
MATH 6950.713Doctoral DissertationFall 2021
MATH 5110.001Introduction to AnalysisFall 2021 SPOT
MATH 4900.703Special ProblemsFall 2021
MATH 5900.720Special ProblemsFall 2021
MATH 3410.510Differential Equations ISummer 5W1 2021 Syllabus SPOT
MATH 3410.520Differential Equations ISummer 5W2 2021 Syllabus SPOT
MATH 6950.703Doctoral DissertationSummer 10W 2021
MATH 5900.702Special ProblemsSummer 10W 2021
MATH 5900.703Special ProblemsSummer 10W 2021
MATH 3410.003Differential Equations ISpring 2021 Syllabus SPOT
MATH 3410.004Differential Equations ISpring 2021 Syllabus SPOT
MATH 6950.718Doctoral DissertationSpring 2021
MATH 3410.500Differential Equations IFall 2020 Syllabus SPOT
MATH 6950.720Doctoral DissertationFall 2020
MATH 6150.001Functional AnalysisFall 2020 Syllabus SPOT
MATH 3410.510Differential Equations ISummer 5W1 2020 Syllabus SPOT
MATH 3410.520Differential Equations ISummer 5W2 2020 SPOT
MATH 6950.719Doctoral DissertationSpring 2020
MATH 3410.001Differential Equations IFall 2019 Syllabus SPOT
MATH 3410.500Differential Equations IFall 2019 Syllabus SPOT
MATH 6950.720Doctoral DissertationFall 2019
MATH 3410.510Differential Equations ISummer 5W1 2019 Syllabus SPOT
MATH 3410.520Differential Equations ISummer 5W2 2019 Syllabus SPOT
MATH 1720.621Calculus IISpring 2019 Syllabus SPOT
MATH 6950.722Doctoral DissertationSpring 2019
MATH 3000.002Real Analysis ISpring 2019 Syllabus SPOT
MATH 1710.621Calculus IFall 2018 Syllabus SPOT
MATH 3410.004Differential Equations IFall 2018 Syllabus SPOT
MATH 6950.720Doctoral DissertationFall 2018
MATH 3410.510Differential Equations ISummer 5W1 2018 Syllabus SPOT
MATH 3410.520Differential Equations ISummer 5W2 2018 Syllabus SPOT
MATH 6950.706Doctoral DissertationSummer 5W1 2018
MATH 1720.621Calculus IISpring 2018 Syllabus SPOT
MATH 3410.005Differential Equations ISpring 2018 Syllabus SPOT
MATH 6950.722Doctoral DissertationSpring 2018
MATH 6940.703Individual ResearchSpring 2018
MATH 1710.621Calculus IFall 2017 Syllabus SPOT
MATH 6950.720Doctoral DissertationFall 2017
MATH 2700.008Linear Algebra and Vector GeometryFall 2017 Syllabus SPOT
MATH 6000.001Millican ColloquiumFall 2017
MATH 6900.720Special ProblemsFall 2017
MATH 1720.620Calculus IISpring 2017 Syllabus SPOT
MATH 6150.001Functional AnalysisSpring 2017 SPOT
MATH 6940.702Individual ResearchSpring 2017
MATH 4900.703Special ProblemsSpring 2017
MATH 1710.620Calculus IFall 2016 Syllabus SPOT
MATH 1720.160Calculus IIFall 2016 Syllabus SPOT
MATH 6000.001Millican ColloquiumFall 2016
MATH 4900.705Special ProblemsFall 2016
MATH 6900.720Special ProblemsFall 2016
MATH 3410.001Differential Equations ISpring 2016 Syllabus SPOT
MATH 3410.003Differential Equations ISpring 2016 Syllabus SPOT
MATH 3410.500Differential Equations ISpring 2016 Syllabus SPOT
MATH 4900.703Special ProblemsSpring 2016
MATH 5900.722Special ProblemsSpring 2016
MATH 6900.722Special ProblemsSpring 2016
MATH 3410.004Differential Equations IFall 2015 Syllabus SPOT
MATH 6150.001Functional AnalysisFall 2015 SPOT
MATH 6000.001Millican ColloquiumFall 2015
MATH 6950.702Doctoral DissertationSummer 10W 2015
MATH 3410.001Differential Equations ISpring 2015 Syllabus
MATH 3410.004Differential Equations ISpring 2015 Syllabus
MATH 6950.722Doctoral DissertationSpring 2015
MATH 6000.001Millican ColloquiumSpring 2015
MATH 6900.722Special ProblemsSpring 2015
MATH 6950.705Doctoral DissertationFall 2014
MATH 6150.001Functional AnalysisFall 2014
MATH 2700.005Linear Algebra and Vector GeometryFall 2014 Syllabus
MATH 6000.001Millican ColloquiumFall 2014
MATH 6900.704Special ProblemsFall 2014
MATH 6950.722Doctoral DissertationSpring 2014
MATH 5320.001Functions of a Real VariableSpring 2014
MATH 3000.001Real Analysis ISpring 2014
MATH 3410.004Differential Equations IFall 2013 Syllabus
MATH 6950.705Doctoral DissertationFall 2013
MATH 5310.001Functions of a Real VariableFall 2013
MATH 6950.715Doctoral DissertationSpring 2013
MATH 6950.705Doctoral DissertationFall 2012
MATH 3000.003Real Analysis IFall 2012
MATH 3610.001Real Analysis IIFall 2012
MATH 3410.003Differential Equations ISpring 2012
MATH 3410.500Differential Equations ISpring 2012
MATH 2730.005Multivariable CalculusSpring 2012
MATH 4900.712Special ProblemsSpring 2012
MATH 6900.703Special ProblemsSpring 2012
MATH 2730.003Multivariable CalculusFall 2011
MATH 2730.004Multivariable CalculusFall 2011
MATH 2730.500Multivariable CalculusFall 2011
MATH 5900.716Special ProblemsFall 2011
MATH 6900.704Special ProblemsFall 2011
MATH 5320.001Functions of a Real VariableSpring 2011
MATH 2730.004Multivariable CalculusSpring 2011 Syllabus
MATH 6900.703Special ProblemsSpring 2011
MATH 1720.007Calculus IIFall 2010
MATH 5310.001Functions of a Real VariableFall 2010
MATH 5900.716Special ProblemsFall 2010
MATH 4100.001Fourier AnalysisSpring 2010
MATH 6150.001Functional AnalysisSpring 2010
MATH 5900.771Special ProblemsSpring 2010
MATH 6150.001Functional AnalysisFall 2009
MATH 3000.002Real Analysis IFall 2009
MATH 3410.001Differential Equations ISpring 2009
MATH 5120.001Introduction to AnalysisSpring 2009
MATH 4900.703Special ProblemsSpring 2009
MATH 5110.001Introduction to AnalysisFall 2008
MATH 2730.002Multivariable CalculusFall 2008
MATH 4900.710Special ProblemsFall 2008
MATH 5120.001Introduction to AnalysisSpring 2008
MATH 4900.703Special ProblemsSpring 2008
MATH 5900.771Special ProblemsSpring 2008
MATH 5110.001Introduction to AnalysisFall 2007
MATH 2510.002Real Analysis IFall 2007
MATH 4900.710Special ProblemsFall 2007
MATH 2510.002Real Analysis ISpring 2007
MATH 1710.005Calculus IFall 2006
MATH 2520.001Real Analysis IIFall 2006
MATH 2520.001Real Analysis IISpring 2006
MATH 1710.008Calculus IFall 2005
MATH 2510.002Real Analysis IFall 2005

Published Intellectual Contributions

    Conference Proceeding

  • with S. Dilworth (Eds. B. Randrianantoanina and N. Randrianantoanina). (2007). "Orlicz sequence spaces with denumerable sets of symmetric sequences" , in Banach spaces and their applications in Analysis.
  • with M. Gonzales and M. Wojtowicz,. (2007). "Semi-homogeneous bases in Orlicz sequence spaces" in Function spaces, Contemporary Mathematics, 435, 171- 181.
  • Journal Article

  • Sari, B., Gaebler , H., Motakis, P. (2024). On the complete separation of unique l_1 spreading models and the Lebesgue property of Banach spaces. Canadian Journal of Mathematics. https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/on-the-complete-separation-of-unique-ell-1-spreading-models-and-the-lebesgue-property-of-banach-spaces/23036AEA8E9750496F5B924E4EF08D32#article
  • Sari, B., Gaebler , H. (2024). Banach spaces with the Lebesgue property of Riemann integrability. Journal of Functional Analysis. 287 (2) https://www.sciencedirect.com/science/article/abs/pii/S0022123624001502
  • Sari, B., Dilworth, S., Kutzarova, D., Stankov, S. (2023). Duals of Tirilman spaces have unique subsymmetric basic sequences. Bulletin of the London Mathematical Society. 56 (1) Wiley. https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12920
  • Freeman, D., Odell, E., Sari, B., Zheng, B. (2018). On spreading sequences and asymptotic structures. Transactions of the American Mathematical Society. 370 6933-6953. http://www.ams.org/journals/tran/2018-370-10/S0002-9947-2018-07189-6/
  • Argyros, S., Motakis, P., Sari, B. (2017). A study of conditional spreading sequences. Journal of Functional Analysis. 273 (3) 1205-1257. https://www.sciencedirect.com/science/article/pii/S0022123617301544
  • Alspach, D., Sari, B. (2016). Separable elastic Banach spaces are universal. Journal of Functional Analysis. 270 (1) 177-200. https://www.sciencedirect.com/science/article/pii/S0022123615004164
  • Gao, S., Jackson, S.C., Sari, B. (2011). On the complexity of the uniform homeomorphism relation between separable Banach spaces. Transactions of the American Mathematical Society. 363 (6) 3071-3099.
  • S. Gao, S. Jackson, and B. Sari. (2011). On the complexity of the uniform homeomorphism relation between separable Banach spaces. Transactions of the American Mathematical Society. 363 (6) 3071-3099.
  • E. Odell, B. Sari, Th. Schlumprecht and B. Zheng. Systems formed by translations of one element in Lp(R), to appear in the Transactions of the American Mathematical Society.
  • with S. Dilworth and E. Odell. (2007). Lattice structures and spreading models.
  • with T. Schlumprecht, N. Tomczak-Jaegermann and V. Troitsky. (2007). On closed ideals in L(l_p, l_q).
  • Sari, B. (2007). On the structure of symmetric sequences in Orlicz sequence spaces.
  • Sari, B. (2006). On Banach spaces with few spreading models.
  • Sari, B. (2004). Envelope Functions and Asymptotic Structures in Banach Spaces.
  • Popular Press Article

  • Sari, B. (2003). Asymptotic structures in Banach spaces.

Contracts, Grants and Sponsored Research

    Grant - Research

  • Sari, B., "Linear and nonlinear problems in Banach space theory," sponsored by Simons Foundation, Private, $35000 Funded. (2011 - 2016).
  • Sari, B. (Principal), Gao, S. (Principal), "Problems in Linear and Nonlinear Geometry of Banch Spaces," sponsored by Simons Foundation, FOND, Funded. (2011 - 2016).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE