Skip to main content

Daniel A. Kunz

Title: Professor

Department: Biological Sciences

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, University of Minnesota, Minneapolis, 1979
    Major: Microbiology; Ph.D. Dissertation, "Biochemical and Genetic Studies of TOL Plasmid-Encoded Degradative Functions in Pseudomonas putida" 167 pp.
  • MA, Southwest Texas State University, 1973
    Major: Biology/Chem.; Master's Thesis, "Studies on an Undescribed Putative Nitrogen-Fixing Antarctic Bacterium (gen. nov.)". 138 p.
  • BS, Southwest Texas State University, 1971
    Major: Biology/Chem.

Current Scheduled Teaching

No current or future courses scheduled.

Previous Scheduled Teaching

BIOL 6940.741Individual ResearchSpring 2023
BIOC 5950.741Master's ThesisSpring 2023
BIOC 3621.001Principles of BiochemistrySpring 2023 Syllabus SPOT
BIOL 4900.741Special ProblemsSpring 2023
BIOL 1711.003Honors Biology for Science Majors IFall 2022 Syllabus SPOT
BIOL 6940.741Individual ResearchFall 2022
BIOL 5950.741Master's ThesisFall 2022
BIOC 3621.001Principles of BiochemistryFall 2022 Syllabus SPOT
BIOL 6940.741Individual ResearchSpring 2022
BIOC 5950.741Master's ThesisSpring 2022
BIOC 3621.001Principles of BiochemistrySpring 2022 Syllabus SPOT
BIOL 1711.003Honors Biology for Science Majors IFall 2021 Syllabus SPOT
BIOL 6940.741Individual ResearchFall 2021
BIOL 5950.741Master's ThesisFall 2021
BIOC 3621.001Principles of BiochemistryFall 2021 Syllabus SPOT
BIOL 5900.741Special ProblemsFall 2021
BIOL 6940.741Individual ResearchSpring 2021
BIOC 3621.001Principles of BiochemistrySpring 2021 Syllabus SPOT
BIOL 6910.741Special ProblemsSpring 2021
BIOL 1711.003Honors Biology for Science Majors IFall 2020 Syllabus SPOT
BIOC 6940.741Individual ResearchFall 2020
BIOL 6940.741Individual ResearchFall 2020
BIOC 3621.001Principles of BiochemistryFall 2020 Syllabus SPOT
BIOL 6940.741Individual ResearchSpring 2020
BIOL 2041.001MicrobiologySpring 2020 Syllabus
BIOL 4900.741Special ProblemsSpring 2020
BIOC 3621.001Principles of BiochemistryFall 2019 Syllabus SPOT
BIOL 6940.741Individual ResearchSummer 5W1 2019
BIOL 2041.001MicrobiologySpring 2019 Syllabus SPOT
BIOL 5900.741Special ProblemsSpring 2019
BIOL 6950.741Doctoral DissertationFall 2018
BIOC 3621.001Principles of BiochemistryFall 2018 Syllabus SPOT
BIOL 4900.741Special ProblemsFall 2018
BIOC 3621.001Elementary BiochemistrySummer 5W1 2018 Syllabus SPOT
BIOC 6950.741Doctoral DissertationSpring 2018
BIOL 2041.001MicrobiologySpring 2018 Syllabus SPOT
BIOL 4900.741Special ProblemsSpring 2018
BIOC 6950.741Doctoral DissertationFall 2017
BIOC 3621.001Elementary BiochemistryFall 2017 Syllabus SPOT
BIOC 6940.741Individual ResearchFall 2017
BIOC 3621.001Elementary BiochemistrySummer 5W1 2017 Syllabus SPOT
BIOL 6950.741Doctoral DissertationSpring 2017
BIOL 4951.751Honors College Capstone ThesisSpring 2017
BIOL 6940.741Individual ResearchSpring 2017
BIOL 2041.001MicrobiologySpring 2017 Syllabus SPOT
BIOL 6950.741Doctoral DissertationFall 2016
BIOC 3621.001Elementary BiochemistryFall 2016 SPOT
BIOL 6940.741Individual ResearchFall 2016
BIOL 5900.741Special ProblemsFall 2016
BIOL 6940.741Individual ResearchSpring 2016
BIOL 2041.001MicrobiologySpring 2016 Syllabus SPOT
BIOC 3621.001Elementary BiochemistryFall 2015 SPOT
BIOL 6940.741Individual ResearchFall 2015
BIOL 6950.741Doctoral DissertationSpring 2015
BIOL 6940.741Individual ResearchSpring 2015
BIOL 2041.001MicrobiologySpring 2015 Syllabus
BIOL 6950.741Doctoral DissertationFall 2014
BIOC 3621.001Elementary BiochemistryFall 2014 Syllabus
BIOL 6940.741Individual ResearchFall 2014
BIOL 6940.741Individual ResearchSummer 5W2 2014
BIOL 6940.741Individual ResearchSummer 5W1 2014
BIOL 6940.741Individual ResearchSpring 2014
BIOL 2041.001MicrobiologySpring 2014 Syllabus
BIOC 6900.741Special ProblemsSpring 2014
BIOL 5900.741Special ProblemsSpring 2014
BIOL 5910.741Special ProblemsSpring 2014
BIOC 4540.001Biochemistry IFall 2013
BIOC 5540.001Biochemistry IFall 2013
BIOL 6940.741Individual ResearchFall 2013
BIOL 5900.741Special ProblemsFall 2013
BIOL 6900.741Special ProblemsFall 2013
BIOL 2041.001MicrobiologySummer 5W1 2013
BIOL 2041.001MicrobiologySpring 2013
BIOC 6900.741Special ProblemsSpring 2013
BIOL 6900.741Special ProblemsSpring 2013
BIOC 4540.001Biochemistry IFall 2012
BIOC 5540.001Biochemistry IFall 2012
BIOL 6900.741Special ProblemsFall 2012
BIOL 2041.001MicrobiologySummer 5W1 2012
BIOL 2041.001MicrobiologySpring 2012 Syllabus
BIOL 6910.741Special ProblemsSpring 2012
BIOL 4501.001Bacterial Diversity and PhysiologyFall 2011 Syllabus
BIOL 5501.001Bacterial Diversity and PhysiologyFall 2011
BIOL 4502.501Bacterial Diversity and Physiology LaboratoryFall 2011
BIOL 5502.001Bacterial Diversity and Physiology LaboratoryFall 2011
BIOL 6940.741Individual ResearchFall 2011
BIOL 5910.741Special ProblemsFall 2011
BIOL 6900.741Special ProblemsFall 2011
BIOL 2041.001MicrobiologySummer 5W1 2011
BIOL 2041.001MicrobiologySpring 2011 Syllabus
BIOC 6610.001Advanced MetabolismFall 2010
BIOL 4900.741Special ProblemsFall 2010
BIOL 6910.741Special ProblemsFall 2010
BIOL 5950.741Master's ThesisSummer 5W1 2010
BIOL 4910.741Special ProblemsSummer 10W 2010
BIOL 6940.741Individual ResearchSpring 2010
BIOL 5950.741Master's ThesisSpring 2010
BIOL 2041.001MicrobiologySpring 2010
BIOL 5900.741Special ProblemsSpring 2010
BIOL 6940.741Individual ResearchFall 2009
BIOL 5900.741Special ProblemsFall 2009
BIOL 6900.741Special ProblemsFall 2009
BIOC 6610.001Advanced MetabolismSpring 2009
BIOL 5950.741Master's ThesisSpring 2009
BIOL 5900.741Special ProblemsSpring 2009
BIOL 4501.001Bacterial Diversity and PhysiologyFall 2008
BIOL 5501.001Bacterial Diversity and PhysiologyFall 2008
BIOL 4502.501Bacterial Diversity and Physiology LaboratoryFall 2008
BIOL 5502.501Bacterial Diversity and Physiology LaboratoryFall 2008
BIOL 5950.741Master's ThesisFall 2008
BIOL 4900.741Special ProblemsFall 2008
BIOL 5900.741Special ProblemsFall 2008
BIOL 5910.741Special ProblemsFall 2008
BIOL 6940.741Individual ResearchSpring 2008
BIOL 2041.001MicrobiologySpring 2008
BIOL 2042.501Microbiology LaboratorySpring 2008
BIOL 2042.502Microbiology LaboratorySpring 2008
BIOL 2042.503Microbiology LaboratorySpring 2008
BIOL 2042.504Microbiology LaboratorySpring 2008
BIOL 2042.505Microbiology LaboratorySpring 2008
BIOL 2042.506Microbiology LaboratorySpring 2008
BIOL 4900.741Special ProblemsSpring 2008
BIOL 6940.741Individual ResearchFall 2007
BIOL 6900.741Special ProblemsFall 2007
BIOL 2040.001Biology of MicroorganismsSpring 2007
BIOL 5930.741Research Problems in Lieu of ThesisSpring 2007
BIOL 4900.741Special ProblemsSpring 2007
BIOL 5900.741Special ProblemsSpring 2007
BIOC 6610.001Advanced MetabolismFall 2006
BIOL 6940.741Individual ResearchFall 2006
BIOL 5950.741Master's ThesisFall 2006
BIOL 5900.741Special ProblemsFall 2006
BIOL 2040.001Biology of MicroorganismsSpring 2006
BIOL 6940.741Individual ResearchSpring 2006
BIOC 6910.741Special ProblemsSpring 2006
BIOL 4501.001Bacterial Diversity and PhysiologyFall 2005
BIOL 5501.001Bacterial Diversity and PhysiologyFall 2005
BIOL 5910.741Special ProblemsFall 2005
BIOL 2040.001Biology of MicroorganismsSpring 2005
BIOL 1710.004Principles of Biology IFall 2004
BIOL 5910.741Special ProblemsFall 2004

Published Intellectual Contributions

    Book Chapter

  • Ribbons, D. W., P. Keyser, R. W. Eaton, B. N. Anderson, D. A. Kunz, and B. F. Taylor. (1984). Microbial degradation of phthalates. p. 371-397. In D. T. Gibson (ed.), Microbial Degradation of Organic Compounds.
  • Journal Article

  • Kunz, D.A., Jones, L.B., Wang, X., Gullapalli, J.S. Characterization of the Nit6803 nitrilase homolog from the cyanotroph Pseudomonas fluorescens NCIMB 11764.. 25 100893. Elsevier. https://doi.org/10.1016/j.bbrep.2020.100893
  • Dokwal, D., Romsdahl, T.B., Kunz, D.A., Alonso, A., Dickstein, R. (2021). Phosphorus deprivation affects composition and spatial distribution of membrane lipids in legume nodules. Plant Physiology. https://watermark.silverchair.com/kiaa115.pdf
  • Jones, L.B., Kunz, D.A. (2019). Draft genome sequence of the cyanotroph Pseudomonas monteilii BCN3. 3 Biotech. 8 (1) e01322-18. Washington, D.C., American Society for Microbiology.
  • Jones, L.B., Ghosh, P., Lee, J., Chou, C., Kunz, D.A. (2018). Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source. Microbiology. 164 956-968. United Kingdom,
  • Jones, L.B., Kunz, D.A. (2015). Complete Genome Sequence of a Cyanotroph, Pseudomonas fluorescens NCIMB 11764, Employing Single-Molecule Real-Time Technology. Genome Announcements. 3 (5) e01111-15. American Society for Microbiology.
  • Vilo, C. A., M. J. Benedik, D. A. Kunz, and Q. Dong. (2012). Draft genome sequence of the cyanide- utilizing bacterium, Pseudomonas fluorescens strain NCIMB 11764. 194 6618-6619. Washington, DC, American Society for Microbiology.
  • Fernandez, R. F., and D. A. Kunz. (2005). Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate.
  • Fernandez, R. , E. Dolghih, and D. A. Kunz. (2004). Enzymatic assimilation of cyanide in Pseudomonas fluroescens NCIMB 11764 proceeds via pterin-dependent oxygenolytic cleavage to formate and ammonia. Applied and Environmental Microbiology. 70 121-128. Washington, American Society for Microbiology.
  • Carterson, A. J., L. A. Morici, D. W. Jackson, A. Frisk, S. E. Lizewski, R. Jupiter, K. Simpson, D. A. Kunz, S. H. Davis, J. R. Schurr, D. J. Hassett, and M. J. Schurr. (2004). The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa.
  • Fukushima, R. S., P. J. Weimer, and D. A. Kunz. (2003). Use of photocatalytic reduction to hasten preparation of culture media for saccharolytic Clostridium species.
  • Fukushima, R. S., P. J. Weimer, and D. A. Kunz. (2002). Photocatalytic interaction of resazurin-N-oxide with cysteine optimizes preparation of anaerobic culture media.
  • Kunz, D. A., R. F. Fernandez and P. Parab. (2001). Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase.
  • Kunz, D. A., J-L. Chen and G. Pan. (1998). Accumulation of -keto acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764.
  • Chen, J-L., and D. A. Kunz. (1997). Cyanide utilization in Pseudomonas fluorescens NCIMB 11764 involves a putative siderophore.
  • Wang, C.-S., D. A. Kunz and B. J. Venables. (1996). Incorporation of molecular oxygen and water during enzymatic oxidation of cyanide by Pseudomonas fluorescens NCIMB 11764.
  • Kunz, D. A., C.-S. Wang, and J.-L. Chen. (1994). Alternate routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764.
  • Kunz, D. A., 0. Nagappan, J. Silva-Avalos, and G. T. DeLong. (1992). Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: Evidence for multiple pathways of metabolic conversion.
  • Benjamin, R. C., J. A. Voss, and D. A. Kunz. (1991). Nucleotide sequence of xylE from the TOL (pDK1) plasmid and structural comparison with isofunctional catechol-2,3-oxygenase genes from TOL (pWWO) and NAH7.
  • Silva-Avalos, J., M. G. Richmond, 0. Nagappan, and D. A. Kunz. (1990). Degradation of the metal­cyano complex tetracyanonickelate (II) by cyanide-utilizing bacterial isolates.
  • Kunz, D. A., and 0. Nagappan. (1989). Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764.
  • Sariaslani, F. S., M. K. Trower, and D. A. Kunz. (1989). Involvement of inducible cytochrome P-450 in precocene II oxidation by Streptomyces griseus.
  • Harder, P. A., and D. A. Kunz. (1986). Characterization of the OCT plasmid encoding alkane oxidation and mercury resistance in Pseudomonas putida.
  • Sariaslani. F. S., and D. A. Kunz. (1986). Induction of cytochrome P450 in Streptomyces griseus.
  • Kunz, D. A., G. S. Reddy, and A. Vatvars. (1985). Identification of transformation products arising from bacterial oxidation of codeine by Streptomyces griseus.
  • Kunz, D. A., and P. J. Weimer. (1983). Bacterial formation and metabolism of 6-hydroxyhexanoate: Evidence of a potential role for ω-oxidation.
  • Kunz, D. A., and P. J. Chapman. (1981). Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: Evidence for new functions of the TOL (pWWO) plasmid.
  • Kunz, D. A., and P. J. Chapman. (1981). Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HSI.
  • Kunz, D. A., D. W. Ribbons, and P. J. Chapman. (1981). Metabolism of allylglycine and cis-­crotylglycine by Pseudomonas putida (arvilla) mt-2 harboring a TOL plasmid.
  • Popular Press Article

  • Hagedorn, S. R., R. S. Hanson, and D. A. Kunz (Co-editor and organizer of a Symposium in honor of Stanley Dagley (University of Minnesota)). (1988). Microbial Metabolism and the Carbon Cycle.

Contracts, Grants and Sponsored Research

    Contract

  • Kunz, D.A. (Principal), "Antimicrobial Resistance," sponsored by Private, Other, $3200 Funded. (2014 - 2017).
  • Sponsored Research

  • Kunz, D.A. (Principal), Shulaev, V. (Co-Principal), "Metabolic profiling and functional characterization of cyanide-inducible bacterial genes as a model for studying oxidative stress related events in neurodegeneration," sponsored by College of Science, University of North Texas, $5000 Funded. (2018 - 2019).
  • Kunz, D. (Principal), Wang, X. (Co-Principal), "Structure and function of cyanide-inducible bacterial proteins as a model for studying oxidative stress related events in neurodegenerative disease," sponsored by University of North Texas, University of North Texas, $5000 Funded. (2018 - 2019).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE