Skip to main content

Stephen C. Jackson

Title: Professor

Department: Mathematics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, University of California, Los Angeles, 1983
    Major: Mathematics
  • BS, California Institute of Technology, 1979
    Major: Mathematics

Current Scheduled Teaching

MATH 6950.724Doctoral DissertationSpring 2025
MATH 5020.001Mathematical Logic and Set TheorySpring 2025
MATH 5900.726Special ProblemsSpring 2025
MATH 5900.730Special ProblemsSpring 2025

Previous Scheduled Teaching

MATH 1720.120Calculus IIFall 2024 Syllabus SPOT
MATH 1720.121Calculus IIFall 2024 SPOT
MATH 1720.122Calculus IIFall 2024 SPOT
MATH 1720.123Calculus IIFall 2024 SPOT
MATH 6950.709Doctoral DissertationFall 2024
MATH 5900.713Special ProblemsFall 2024
MATH 5910.703Special ProblemsFall 2024
MATH 6010.001Topics in Logic and FoundationsFall 2024 SPOT
MATH 6950.733Doctoral DissertationSpring 2024
MATH 5320.001Real AnalysisSpring 2024 SPOT
MATH 4430.001Introduction to Graph TheoryFall 2023 Syllabus SPOT
MATH 5310.001Real AnalysisFall 2023 SPOT
MATH 5900.731Special ProblemsFall 2023
MATH 6950.721Doctoral DissertationSpring 2023
MATH 5900.714Special ProblemsSpring 2023
MATH 5900.717Special ProblemsSpring 2023
MATH 5900.718Special ProblemsSpring 2023
MATH 5910.703Special ProblemsSpring 2023
MATH 5910.704Special ProblemsSpring 2023
MATH 5620.001TopologySpring 2023 SPOT
MATH 6950.707Doctoral DissertationFall 2022
MATH 3000.001Real Analysis IFall 2022 Syllabus SPOT
MATH 5900.721Special ProblemsFall 2022
MATH 5900.726Special ProblemsFall 2022
MATH 5910.702Special ProblemsFall 2022
MATH 6010.001Topics in Logic and FoundationsFall 2022 SPOT
MATH 6950.701Doctoral DissertationSummer 5W1 2022
MATH 6950.703Doctoral DissertationSummer 10W 2022
MATH 6950.721Doctoral DissertationSpring 2022
MATH 5900.715Special ProblemsSpring 2022
MATH 5900.720Special ProblemsSpring 2022
MATH 5910.704Special ProblemsSpring 2022
MATH 5910.706Special ProblemsSpring 2022
MATH 5620.001TopologySpring 2022 SPOT
MATH 6950.706Doctoral DissertationFall 2021
MATH 4430.001Introduction to Graph TheoryFall 2021 Syllabus SPOT
MATH 5900.709Special ProblemsFall 2021
MATH 5900.713Special ProblemsFall 2021
MATH 5610.001Topology.Fall 2021 SPOT
MATH 5610.601Topology.Fall 2021 SPOT
MATH 6950.712Doctoral DissertationSpring 2021
MATH 4500.001Introduction to TopologySpring 2021 Syllabus SPOT
MATH 5600.001Introduction to TopologySpring 2021 SPOT
MATH 6900.705Special ProblemsSpring 2021
MATH 6950.713Doctoral DissertationFall 2020
MATH 2730.007Multivariable CalculusFall 2020 Syllabus SPOT
MATH 4900.706Special ProblemsFall 2020
MATH 5900.705Special ProblemsFall 2020
MATH 5900.713Special ProblemsFall 2020
MATH 6900.713Special ProblemsFall 2020
MATH 5610.001Topology.Fall 2020 SPOT
MATH 5610.002Topology.Fall 2020 SPOT
MATH 5610.011Topology.Fall 2020
MATH 5610.601Topology.Fall 2020 SPOT
MATH 6950.712Doctoral DissertationSpring 2020
MATH 5900.702Special ProblemsSpring 2020
MATH 5900.706Special ProblemsSpring 2020
MATH 6010.001Topics in Logic and FoundationsSpring 2020
MATH 6950.713Doctoral DissertationFall 2019
MATH 2700.001Linear Algebra and Vector GeometryFall 2019 Syllabus SPOT
MATH 2700.009Linear Algebra and Vector GeometryFall 2019 Syllabus SPOT
MATH 5900.709Special ProblemsFall 2019
MATH 5900.713Special ProblemsFall 2019
MATH 6900.713Special ProblemsFall 2019
MATH 6950.702Doctoral DissertationSummer 5W2 2019
MATH 6950.714Doctoral DissertationSpring 2019
MATH 6950.726Doctoral DissertationSpring 2019
MATH 4900.702Special ProblemsSpring 2019
MATH 5900.709Special ProblemsSpring 2019
MATH 6900.710Special ProblemsSpring 2019
MATH 5620.001TopologySpring 2019 SPOT
MATH 6950.713Doctoral DissertationFall 2018
MATH 6950.725Doctoral DissertationFall 2018
MATH 2700.001Linear Algebra and Vector GeometryFall 2018 Syllabus SPOT
MATH 4900.703Special ProblemsFall 2018
MATH 5900.709Special ProblemsFall 2018
MATH 5610.001Topology.Fall 2018 SPOT
MATH 6950.714Doctoral DissertationSpring 2018
MATH 6950.726Doctoral DissertationSpring 2018
MATH 5900.703Special ProblemsSpring 2018
MATH 6010.001Topics in Logic and FoundationsSpring 2018 SPOT
MATH 5620.001TopologySpring 2018 SPOT
MATH 6950.713Doctoral DissertationFall 2017
MATH 6950.725Doctoral DissertationFall 2017
MATH 2700.001Linear Algebra and Vector GeometryFall 2017 Syllabus SPOT
MATH 5900.709Special ProblemsFall 2017
MATH 5900.713Special ProblemsFall 2017
MATH 5900.714Special ProblemsFall 2017
MATH 5610.001Topology.Fall 2017 SPOT
MATH 6950.714Doctoral DissertationSpring 2017
MATH 4500.001Introduction to TopologySpring 2017 Syllabus SPOT
MATH 5600.001Introduction to TopologySpring 2017 SPOT
MATH 5020.001Mathematical Logic and Set TheorySpring 2017 SPOT
MATH 5900.714Special ProblemsSpring 2017
MATH 6950.713Doctoral DissertationFall 2016
MATH 4010.001Introduction to MetamathematicsFall 2016 Syllabus SPOT
MATH 2700.003Linear Algebra and Vector GeometryFall 2016 Syllabus SPOT
MATH 5010.001Mathematical Logic and Set TheoryFall 2016 SPOT
MATH 5900.713Special ProblemsFall 2016
MATH 6900.713Special ProblemsFall 2016
MATH 5420.001COMPLEX VARIABLESpring 2016 SPOT
MATH 6950.714Doctoral DissertationSpring 2016
MATH 5900.714Special ProblemsSpring 2016
MATH 6900.714Special ProblemsSpring 2016
MATH 6010.001Topics in Logic and FoundationsSpring 2016
MATH 6950.711Doctoral DissertationFall 2015
MATH 5410.002Functions of a Complex VariableFall 2015 SPOT
MATH 2700.001Linear Algebra and Vector GeometryFall 2015 SPOT
MATH 5900.713Special ProblemsFall 2015
MATH 6900.713Special ProblemsFall 2015
MATH 6950.701Doctoral DissertationSummer 10W 2015
MATH 6950.703Doctoral DissertationSummer 5W1 2015
MATH 5420.001COMPLEX VARIABLESpring 2015
MATH 6950.714Doctoral DissertationSpring 2015
MATH 6900.714Special ProblemsSpring 2015
MATH 6010.001Topics in Logic and FoundationsSpring 2015
MATH 6950.711Doctoral DissertationFall 2014
MATH 5410.002Functions of a Complex VariableFall 2014
MATH 6940.711Individual ResearchFall 2014
MATH 4010.001Introduction to MetamathematicsFall 2014 Syllabus
MATH 5010.001Mathematical Logic and Set TheoryFall 2014
MATH 5900.708Special ProblemsFall 2014
MATH 6900.711Special ProblemsFall 2014
MATH 6900.761Special ProblemsFall 2014
MATH 6950.714Doctoral DissertationSpring 2014
MATH 2730.005Multivariable CalculusSpring 2014 Syllabus
MATH 5900.714Special ProblemsSpring 2014
MATH 6900.714Special ProblemsSpring 2014
MATH 6910.714Special ProblemsSpring 2014
MATH 6010.001Topics in Logic and FoundationsSpring 2014
MATH 6940.711Individual ResearchFall 2013
MATH 4520.001Introduction to Functions of a Complex VariableFall 2013 Syllabus
MATH 5400.001Introduction to Functions of a Complex VariableFall 2013
MATH 5900.708Special ProblemsFall 2013
MATH 6900.711Special ProblemsFall 2013
MATH 6910.711Special ProblemsFall 2013
MATH 6010.001Topics in Logic and FoundationsFall 2013
MATH 5900.704Special ProblemsSummer 5W1 2013
MATH 6950.713Doctoral DissertationSpring 2013
MATH 6940.703Individual ResearchSpring 2013
MATH 4500.001Introduction to TopologySpring 2013 Syllabus
MATH 5600.001Introduction to TopologySpring 2013
MATH 4900.713Special ProblemsSpring 2013
MATH 5900.711Special ProblemsSpring 2013
MATH 5900.714Special ProblemsSpring 2013
MATH 6900.710Special ProblemsSpring 2013
MATH 6910.704Special ProblemsSpring 2013
MATH 5620.001TopologySpring 2013
MATH 6950.711Doctoral DissertationFall 2012
MATH 6940.711Individual ResearchFall 2012
MATH 5900.708Special ProblemsFall 2012
MATH 6900.711Special ProblemsFall 2012
MATH 6910.711Special ProblemsFall 2012
MATH 5610.001Topology.Fall 2012
MATH 3740.001Vector CalculusFall 2012 Syllabus
MATH 4900.702Special ProblemsSummer 5W2 2012
MATH 3420.001Differential Equations IISpring 2012 Syllabus
MATH 6950.713Doctoral DissertationSpring 2012
MATH 5900.711Special ProblemsSpring 2012
MATH 6900.710Special ProblemsSpring 2012
MATH 6010.001Topics in Logic and FoundationsSpring 2012
MATH 6950.711Doctoral DissertationFall 2011
MATH 3510.001Introduction to Abstract AlgebraFall 2011 Syllabus
MATH 4900.714Special ProblemsFall 2011
MATH 6900.711Special ProblemsFall 2011
MATH 6900.761Special ProblemsFall 2011
MATH 6010.001Topics in Logic and FoundationsFall 2011
MATH 4900.710Special ProblemsSummer 5W2 2011
MATH 6950.713Doctoral DissertationSpring 2011
MATH 2700.004Linear Algebra and Vector GeometrySpring 2011 Syllabus
MATH 5900.711Special ProblemsSpring 2011
MATH 5900.714Special ProblemsSpring 2011
MATH 5620.001TopologySpring 2011
MATH 4520.001Introduction to Functions of a Complex VariableFall 2010 Syllabus
MATH 3000.003Real Analysis IFall 2010 Syllabus
MATH 5900.708Special ProblemsFall 2010
MATH 5900.761Special ProblemsSummer 5W2 2010
MATH 5900.761Special ProblemsSummer 5W1 2010
MATH 5910.711Special ProblemsSummer 5W1 2010
MATH 6900.761Special ProblemsSummer 5W2 2010
MATH 3410.003Differential Equations ISpring 2010 Syllabus
MATH 6950.710Doctoral DissertationSpring 2010
MATH 4900.706Special ProblemsSpring 2010
MATH 5900.710Special ProblemsSpring 2010
MATH 5620.001TopologySpring 2010
MATH 6950.711Doctoral DissertationFall 2009
MATH 2700.001Linear Algebra and Vector GeometryFall 2009 Syllabus
MATH 4900.714Special ProblemsFall 2009
MATH 5900.708Special ProblemsFall 2009
MATH 5610.001Topology.Fall 2009
MATH 3520.001Abstract Algebra IISpring 2009
MATH 1710.624Calculus ISpring 2009
MATH 6950.710Doctoral DissertationSpring 2009
MATH 6950.711Doctoral DissertationFall 2008
MATH 3510.002Introduction to Abstract AlgebraFall 2008
MATH 1650.624Pre CalculusFall 2008
MATH 2730.001Multivariable CalculusSpring 2008
MATH 4900.706Special ProblemsSpring 2008
MATH 5900.710Special ProblemsSpring 2008
MATH 6900.710Special ProblemsSpring 2008
MATH 5620.001TopologySpring 2008
MATH 4430.002Introduction to Graph TheoryFall 2007
MATH 5610.001Topology.Fall 2007
MATH 5900.761Special ProblemsSummer 5W1 2007
MATH 5900.753Special ProblemsSpring 2007
MATH 6010.001Topics in Logic and FoundationsSpring 2007
MATH 2510.002Real Analysis IFall 2006
MATH 4900.714Special ProblemsFall 2006
MATH 6010.001Topics in Logic and FoundationsFall 2006
MATH 6950.711Doctoral DissertationSummer 5W1 2006
MATH 6900.711Special ProblemsSummer 5W1 2006
MATH 2770.002Discrete Mathematical StructuresSpring 2006
MATH 6950.710Doctoral DissertationSpring 2006
MATH 5900.710Special ProblemsSpring 2006
MATH 6900.710Special ProblemsSpring 2006
MATH 6910.710Special ProblemsSpring 2006
MATH 6950.711Doctoral DissertationFall 2005
MATH 4520.001Introduction to Functions of a Complex VariableFall 2005
MATH 5400.001Introduction to Functions of a Complex VariableFall 2005
MATH 2700.002Linear Algebra and Vector GeometryFall 2005
MATH 4900.710Special ProblemsSummer 5W2 2005
MATH 5620.001TopologySpring 2005
MATH 2700.002Linear Algebra and Vector GeometryFall 2004
MATH 5610.001Topology.Fall 2004

Published Intellectual Contributions

    Abstracts and Proceedings

  • with R. D. Mauldin. (2002). Sets Meeting Isometric Copies of the lattice Z2 In Exactly one Point.
  • Book Chapter

  • Jackson, S.C. (2018). Towards a Theory of Definable Sets. Proceedings to the International Congress of Mathematicians 2018. 1 25-44.
  • Jackson, S. (2012). Projective ordinals. Introduction to Part IV. Wadge degrees and projective ordinals. The Cabal Seminar. Volume II. 37 199--269. Assoc. Symbol. Logic, La Jolla, CA.
  • Jackson, S. (2012). Regular cardinals without the weak partition property. Wadge degrees and projective ordinals. The Cabal Seminar. Volume II. 37 509--517. Assoc. Symbol. Logic, La Jolla, CA.
  • Jackson, S. (2010). Cardinal structure under AD. Logic Colloquium 2007. 35 92--131. Assoc. Symbol. Logic, La Jolla, CA.
  • Jackson, S. (2010). Structural consequences of AD. Handbook of set theory. Vols. 1, 2, 3. 1753--1876. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5764-9_22
  • Jackson, S. (2008). Suslin cardinals, partition properties, homogeneity. Introduction to Part II. Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I. 31 273--313. Assoc. Symbol. Logic, Chicago, IL. https://doi.org/10.1017/CBO9780511546488.015
  • Boykin, C.M., Jackson, S. (2007). Borel boundedness and the lattice rounding property. Advances in logic. 425 113--126. Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/conm/425/08121
  • Boykin, C.M., Jackson, S. (2006). Some applications of regular markers. Logic Colloquium '03. 24 38--55. Assoc. Symbol. Logic, La Jolla, CA.
  • Jackson, S. (1992). Admissibility and Mahloness in $L({\bf R})$. Set theory of the continuum (Berkeley, CA, 1989). 26 63--74. Springer, New York. https://doi.org/10.1007/978-1-4613-9754-0_5
  • Jackson, S. (1988). ${\rm AD}$ and the projective ordinals. Cabal Seminar 81--85. 1333 117--220. Springer, Berlin. https://doi.org/10.1007/BFb0084974
  • Jackson, S., Martin, D.A. (1983). Pointclasses and well-ordered unions. Cabal seminar 79--81. 1019 56--66. Springer, Berlin. https://doi.org/10.1007/BFb0071693
  • Conference Proceeding

  • S. Gao, S. Jackson, and Y. Zhang, eds.. (2007). Advances in Logic. The North Texas Logic Conference, October 8-10, 2004, University of North Texas, Denton. Contemporary Mathematics. Providence, RI, American Mathematical Society.
  • Journal Article

  • Jackson, S.C., Becher, V., Mance, W., Kwietniak, D. (2024). The descriptive complexity of Poisson generic numbers.. Journal of Mathematical Logic.
  • Trang, N.D., Jackson, S.C., Chan, W. (2024). Almost disjoint families under determinacy. Advances in Mathematics.
  • Trang, N.D., Jackson, S.C., Chan, W. (2024). Almost everywhere behavior of functions according to partition measures, Forum of Mathematics, Sigma.
  • Allaart, P.C., Jackson, S.C., Jones, R.T., Lambert, D. (2023). On the existence of numbers with matching continued fraction and decimal expansions. Monatshefte für Mathematik. 202 (1) 1-30.
  • Trang, N., Jackson, S.C., Chan, W. (2023). More definable combinatorics around the first and second uncountable cardinal. Journal of Mathematical Logic. 23 (03) World Scientific.
  • Jackson, S.C., Conley, C., Marks, A., Seward, B., Tucker-Drob, R. (2023). Borel Asymptotic Dimension and Hyperfinite Equivalence Relations. Duke Mathematical Journal. 176 (16) 3175-3226.
  • Jackson, S.C., Creiner, A. (2023). Borel Complexity and Ramsey Largeness of Sets of Oracles Separating Complexity Classes. Mathematical Logic Quarterly. 63 (3) 267-286.
  • Fishman, L., Jackson, S.C., Crone, L. (2022). Equivalence Relations and Determinacy. Journal of Mathematical Logic. 22 (1) 19.
  • Trang, N., Jackson, S., William, C. (2022). COUNTABLE LENGTH EVERYWHERE CLUB UNIFORMIZATION. The Journal of Symbolic Logic. http://math.unt.edu/~ntrang/210818-Chan-v1.pdf
  • Jackson, S.C., Mance, W., Roth, S. (2022). A Non-Borel Special Alpha Limit Set in the Plane. Ergodic Theory and Dynamical Systems. 42 (8) 2550-2560.
  • Fishman, L., Crone, L., Jackson, S.C. (2022). DETERMINACY OF SCHMIDT’S GAME AND OTHER INTERSECTION GAMES. The Journal of Symbolic Logic.
  • Fishman, L., Jackson, S.C., Crone, L. (2022). Hausdorff Dimension Regularity Properties and Games. Israel Journal of Mathematics. 248 (481–500)
  • Jackson, S.C., Chan, W. (2021). Definable Combinatorics at the First Uncountable Cardinal. Transactions of the American Mathematical Society. 374 (3) 2035-2056.
  • Trang, N., Jackson, S.C., Chan, W. (2021). The size of the class of countable sequences of ordinals. Transactions of the American Mathematical Society. https://www.ams.org/journals/tran/0000-000-00/S0002-9947-2021-08573-6/
  • Jackson, S.C., Crone, L., Fishman, L. Equivalence Relations and Determinacy. Journal of Mathematical Logic. 22 (1) 19.
  • Jackson, S.C., Chan, W. (2021). The destruction of the Axiom of Determinacy by forcings on R when Theta is regular.. Israel Journal of Mathematics. 241 119-138.
  • Jackson, S.C., Airey, D., Mance, W. (2020). Some Complexity Results in the Theory of Normal Numbers. Canadian Journal of Mathematics. 1-29.
  • Jackson, S.C., Airey, D., Mance, W. Descriptive Complexity in Cantor Series. Journal of Symbolic Logic.
  • Fishman, L., Crone, L., Hiers, N., Jackson, S.C. (2019). EQUIVALENCE OF THE ROTHBERGER AND 2-ROTHBERGER GAMES FOR HAUSDORFF SPACES. Topology and its Applications. 258 172-176.
  • Jackson, S.C., Conley, C., Marks, A., Seward, B., Tucker-Drob, R. Hyperfiniteness and Borel combinatorics. Journal of the European Mathematical Society. 22 (3) 877-892.
  • Jackson, S.C., Chan, W. (2019). L(R) with Determinacy Satisfies the Suslin Hypothesis. Advances in Mathematics. 346 305-328. Elsevier.
  • Conley, C.T., Jackson, S.C., Kerr, D., Marks, A.S., Seward, B., Tucker-Drob, R.D. (2018). F\o lner tilings for actions of amenable groups. Other. 371 (1-2) 663--683. https://doi.org/10.1007/s00208-017-1633-0
  • Henkis, D., Jackson, S., Lobe, J. (2017). Restricted Steinhaus sets in the plane. Other. 238 (2) 153--166. https://doi.org/10.4064/fm260-7-2016
  • Jackson, S., Khafizov, F.T. (2016). Descriptions and cardinals below $\delta_5^1$. Other. 81 (4) 1177--1224. https://doi.org/10.1017/jsl.2016.7
  • Henkis, D., Jackson, S., Lobe, J. (2016). The finite Steinhaus problem. Other. 67 (4) 551--564.
  • Backs, K., Jackson, S., Mauldin, R.D. (2015). CH, $\bold V=\bold L$, disintegration of measures, and $\Pi_1^1$ sets. Other. 274 76--96. https://doi.org/10.1016/j.aim.2014.12.011
  • Gao, S., Jackson, S. (2015). Countable abelian group actions and hyperfinite equivalence relations. Inventiones Mathematicae. 201 (1) 309-383.
  • Jackson, S.C., Ketchersid, R., Schlutzenberg, F., Woodin, W.H. (2014). Determinacy and J\'onsson cardinals in $L(\Bbb R)$. Other. 79 (4) 1184--1198. https://doi.org/10.1017/jsl.2014.49
  • Jackson, S., L\"owe, Benedikt. (2013). Canonical measure assignments. Other. 78 (2) 403--424. http://projecteuclid.org/euclid.jsl/1368627057
  • Apter, A.W., Jackson, S.C., L\"owe, Benedikt. (2013). Cofinality and measurability of the first three uncountable cardinals. Other. 365 (1) 59--98. https://doi.org/10.1090/S0002-9947-2012-05497-3
  • S. Gao, S. Jackson, and B. Sari. (2011). On the complexity of the uniform homeomorphism relation between separable Banach spaces. Transactions of the American Mathematical Society. 363 (6) 3071-3099.
  • Gao, S., Jackson, S.C., Sari, B. (2011). On the complexity of the uniform homeomorphism relation between separable Banach spaces. Transactions of the American Mathematical Society. 363 (6) 3071-3099.
  • S. Gao, S. Jackson, and V. Kieftenbeld. (2010). The Laczkovich-Komjath property for coanalytic equivalence relations. The Journal of Symbolic Logic. 75 (3) 1091-1101.
  • S. Gao, S. Jackson, and B. Seward. (2009). A coloring property for countable groups. Mathematical Proceedings of the Cambridge Philosophical Society. 147 (3) 579-592.
  • S. Gao, S. Jackson, and V. Kieftenbeld. (2008). A classification of ordinals up to Borel isomorphism. Fundamenta Mathematicae. 198 61-76.
  • S. Gao, S. Jackson, M. Laczkovich, and R. D. Mauldin. (2008). On unique representation of families of sets. Transactions of the American Mathematical Society. 360 (2) 939-958.
  • Jackson, S.C. (2008). Suslin Cardinals, Partition Properties, and Homogeneity.
  • Jackson, S., May, R. (2004). The strong partition relation on $\omega_1$ revisited. Other. 50 (1) 33--40. https://doi.org/10.1002/malq.200310073
  • Jackson, S., Mauldin, R.D. (2003). Survey of the Steinhaus tiling problem. Other. 9 (3) 335--361. https://doi.org/10.2178/bsl/1058448676
  • Jackson, S.C., Kechris, A.S., Louveau, A. (2002). Countable Borel equivalence relations. Other. 2 (1) 1--80. https://doi.org/10.1142/S0219061302000138
  • Freiling, C., Jackson, S. (2002). Infinite block maps and generalized Bernoulli measures. Other. (26th Summer Symposium Conference, suppl.) 11--34.
  • Jackson, S., Mauldin, R.D. (2002). On a lattice problem of H. Steinhaus. Other. 15 (4) 817--856. https://doi.org/10.1090/S0894-0347-02-00400-9
  • Jackson, S., Mauldin, R.D. (2002). Sets meeting isometric copies of the lattice ${\bf Z}^2$ in exactly one point. Other. 99 (25) 15883--15887. https://doi.org/10.1073/pnas.222551699
  • Becker, H., Jackson, S. (2001). Supercompactness within the projective hierarchy. Other. 66 (2) 658--672. https://doi.org/10.2307/2695035
  • Jackson, S. (2001). The weak square property. Other. 66 (2) 640--657. https://doi.org/10.2307/2695034
  • Apter, A.W., Henle, J.M., Jackson, S.C. (2000). The calculus of partition sequences, changing cofinalities, and a question of Woodin. Other. 352 (3) 969--1003. https://doi.org/10.1090/S0002-9947-99-02554-4
  • Jackson, S. (1999). A computation of $\delta^1_5$. Other. 140 (670) viii+94. https://doi.org/10.1090/memo/0670
  • Jackson, S., Mauldin, R.D. (1999). On the $\sigma$-class generated by open balls. Other. 127 (1) 99--108. https://doi.org/10.1017/S0305004199003552
  • Erd\Hos, P., Jackson, S., Mauldin, R.D. (1997). On infinite partitions of lines and space. Other. 152 (1) 75--95.
  • Jackson, S.C., Zamboni, L.Q. (1995). A note on a theorem of Chiswell. Other. 123 (9) 2629--2631. https://doi.org/10.2307/2160553
  • Jackson, S., Mauldin, R.D. (1994). Borel measurable selections of Paretian utility functions. Other. 23 (4) 361--378. https://doi.org/10.1016/0304-4068(94)90019-1
  • Erd\Hos, P., Jackson, S., Mauldin, R.D. (1994). On partitions of lines and space. Other. 145 (2) 101--119.
  • Brand, N., Jackson, S. (1994). Properties of classes of random graphs. Other. 3 (4) 435--454. https://doi.org/10.1017/S0963548300001346
  • Dougherty, R., Jackson, S.C., Kechris, A.S. (1994). The structure of hyperfinite Borel equivalence relations. Other. 341 (1) 193--225. https://doi.org/10.2307/2154620
  • Jackson, S., Mauldin, R.D. (1992). Some complexity results in topology and analysis. Other. 141 (1) 75--83. https://doi.org/10.4064/fm-141-1-75-83
  • Jackson, S. (1991). Admissible Suslin cardinals in $L({\bf R})$. Other. 56 (1) 260--275. https://doi.org/10.2307/2274918
  • Jackson, S., Mauldin, R.D. (1991). Nonuniformization results for the projective hierarchy. Other. 56 (2) 742--748. https://doi.org/10.2307/2274715
  • Jackson, S. (1990). A new proof of the strong partition relation on $\omega_1$. Other. 320 (2) 737--745. https://doi.org/10.2307/2001700
  • Jackson, S. (1990). An unboundedness property for norms of length $\geq \omega_2$. Other. 109 (2) 487--491. https://doi.org/10.2307/2048012
  • Jackson, S. (1990). Partition properties and well-ordered sequences. Other. 48 (1) 81--101. https://doi.org/10.1016/0168-0072(90)90081-C
  • Jackson, S. (1989). AD and the very fine structure of $L({\bf R})$. Other. 21 (1) 77--81. https://doi.org/10.1090/S0273-0979-1989-15766-2
  • Monograph

  • Gao, S., Seward, B., Jackson, S.C. (2016). Group colorings and Bernoulli subflows. Memoirs of the American Mathematical Society. 241 (1141) vi+241pp.
  • Popular Press Article

  • Jackson, S.C. (1989). Bulletin Announcement: AD and the Projective Ordinals.
  • Scholarly Note

  • Jackson, S.C., Martin, D.A. (2022). Kunen's work on Determinacy and Descriptive Set Theory (Notices of the AMS). Notices of the American Mathematical Society. 69 (10) 1763-1765.

Contracts, Grants and Sponsored Research

    Grant - Research

  • Jackson, S.C., Gao, S., "Descriptive Dynamics and Borel Combinatorics of Group Actions," sponsored by National Science Foundation, Federal, $270000 Funded. (2018 - 2022).
  • Urbanski, M. (Co-Principal), Gao, S. (Principal), , D. (Co-Principal), Jackson, S.C. (Co-Principal), "Research Training Group in Logic and Dynamics [NSF]," sponsored by UNT, Federal, $1500000 Funded. (2010 - 2016).
  • Jackson, S.C. (Co-Principal), Gao, S. (Principal), "Descriptive Dynamics and Borel Combinatorics of Group Actions," sponsored by National Science Foundation, FED, Funded. (2018 - 2022).
  • Urbanski, M. (Principal), Mauldin, R.D. (Co-Principal), Jackson, S.C. (Principal), Gao, S. (Principal), "Research Training Group in Logic and Dynamics," sponsored by National Science Foundation, FED, Funded. (2010 - 2016).
  • Jackson, S.C. (Co-Principal), Gao, S. (Principal), "Equivalence Relations, Symbolic Dynamics and Descriptive Set Theory," sponsored by National Science Foundation, FED, Funded. (2012 - 2016).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE