Skip to main content

Jyoti Shah

Title: Chair

Department: Biological Sciences

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, University of Notre Dame, 1992
    Major: Biological Sciences
    Dissertation: The Cloning and Molecular and Genetic Characterization of th & Saccharomyces Cerevisias Sporulation Gene IME4
  • MS, University of Bombay, 1985
    Major: Microbiology
  • BS, University of Bombay, 1983
    Major: Microbiology

Current Scheduled Teaching

BIOL 4800.001Biological Sciences Seminar SeriesFall 2024 Syllabus
BIOL 5860.001Biological Sciences Seminar SeriesFall 2024 Syllabus
BIOC 6950.707Doctoral DissertationFall 2024
BIOL 6940.707Individual ResearchFall 2024
BIOL 6910.700Special ProblemsFall 2024

Previous Scheduled Teaching

BIOC 6950.707Doctoral DissertationSpring 2024
BIOL 1722.003Honors Biology for Science Majors IISpring 2024 Syllabus SPOT
BIOL 6940.707Individual ResearchSpring 2024
BIOL 6910.700Special ProblemsSpring 2024 SPOT
BIOC 6600.001Advanced Molecular BiologyFall 2023 SPOT
BIOL 4800.001Biological Sciences Seminar SeriesFall 2023 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2023 SPOT
BIOC 6950.707Doctoral DissertationFall 2023
BIOC 6940.707Individual ResearchFall 2023
BIOC 6900.707Special ProblemsFall 2023
BIOC 6950.707Doctoral DissertationSummer 5W2 2023
BIOC 6900.707Special ProblemsSummer 5W2 2023
BIOL 1720.003Biology for Science Majors IISpring 2023 Syllabus SPOT
BIOL 1720.004Biology for Science Majors IISpring 2023 Syllabus SPOT
BIOC 6950.707Doctoral DissertationSpring 2023
BIOC 6940.707Individual ResearchSpring 2023
BIOL 4800.001Biological Sciences Seminar SeriesFall 2022 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2022 SPOT
BIOC 6950.707Doctoral DissertationFall 2022
BIOC 6940.707Individual ResearchFall 2022
BIOL 6940.707Individual ResearchFall 2022
BIOL 4900.707Special ProblemsFall 2022 Syllabus
BIOC 6950.707Doctoral DissertationSummer 5W2 2022
BIOC 6950.707Doctoral DissertationSpring 2022
BIOL 1722.003Honors Biology for Science Majors IISpring 2022 Syllabus SPOT
BIOC 6940.707Individual ResearchSpring 2022
BIOL 6940.707Individual ResearchSpring 2022
BIOL 4800.001Biological Sciences Seminar SeriesFall 2021 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2021 SPOT
BIOC 6950.707Doctoral DissertationFall 2021
BIOC 6940.707Individual ResearchFall 2021
BIOL 6940.707Individual ResearchFall 2021
BIOC 4900.707Special ProblemsSummer 10W 2021 Syllabus
BIOC 6950.707Doctoral DissertationSpring 2021
BIOL 1722.003Honors Biology for Science Majors IISpring 2021 Syllabus SPOT
BIOL 3996.739Honors College Mentored Research ExperienceSpring 2021
BIOC 6940.707Individual ResearchSpring 2021
BIOL 6940.707Individual ResearchSpring 2021
BIOL 4800.001Biological Sciences Seminar SeriesFall 2020 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2020 SPOT
BIOC 6950.707Doctoral DissertationFall 2020
BIOC 6940.707Individual ResearchFall 2020
BIOL 6940.707Individual ResearchFall 2020
BIOL 6710.001Signaling Mechanism in PlantsFall 2020 SPOT
BIOL 4900.707Special ProblemsSummer 10W 2020
BIOC 6950.707Doctoral DissertationSpring 2020
BIOL 1722.003Honors Biology for Science Majors IISpring 2020 Syllabus
BIOC 6940.707Individual ResearchSpring 2020
BIOL 6940.707Individual ResearchSpring 2020
BIOL 4900.707Special ProblemsSpring 2020
BIOL 4800.001Biological Sciences Seminar SeriesFall 2019 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2019 SPOT
BIOC 6950.707Doctoral DissertationFall 2019
BIOC 6940.707Individual ResearchFall 2019
BIOC 6940.707Individual ResearchFall 8W2 2019
BIOL 6940.707Individual ResearchFall 2019
BIOL 4900.707Special ProblemsFall 2019
BIOC 6950.707Doctoral DissertationSummer 10W 2019
BIOC 6940.707Individual ResearchSummer 10W 2019
BIOC 6950.707Doctoral DissertationSpring 2019
BIOL 6950.707Doctoral DissertationSpring 2019
BIOC 6940.707Individual ResearchSpring 2019
BIOL 6940.707Individual ResearchSpring 2019
BIOL 4900.707Special ProblemsSpring 2019
BIOL 4800.001Biological Sciences Seminar SeriesFall 2018 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2018 SPOT
BIOC 6950.707Doctoral DissertationFall 2018
BIOL 6950.707Doctoral DissertationFall 2018
BIOL 6940.707Individual ResearchFall 2018
BIOL 4910.707Special ProblemsSummer 10W 2018
BIOL 1720.001Biology for Science Majors IISpring 2018 Syllabus SPOT
BIOC 6950.707Doctoral DissertationSpring 2018
BIOL 6950.707Doctoral DissertationSpring 2018
BIOL 1722.003Honors Biology for Science Majors IISpring 2018 Syllabus SPOT
BIOL 3996.739Honors College Mentored Research ExperienceSpring 2018
BIOC 6940.707Individual ResearchSpring 2018
BIOL 6940.707Individual ResearchSpring 2018
BIOL 4800.001Biological Sciences Seminar SeriesFall 2017 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2017 SPOT
BIOC 6950.707Doctoral DissertationFall 2017
BIOL 6940.707Individual ResearchFall 2017
BIOL 6710.001Signaling Mechanism in PlantsFall 2017 SPOT
BIOL 1720.001Biology for Science Majors IISpring 2017 Syllabus SPOT
BIOC 6950.707Doctoral DissertationSpring 2017
BIOL 1722.003Honors Biology for Science Majors IISpring 2017 Syllabus SPOT
BIOC 6940.707Individual ResearchSpring 2017
BIOL 6940.707Individual ResearchSpring 2017
BIOL 4800.001Biological Sciences Seminar SeriesFall 2016 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2016 SPOT
BIOL 6950.707Doctoral DissertationFall 2016
BIOL 6940.707Individual ResearchFall 2016
BIOL 6700.001Plant Interaction with EnvironmentFall 2016 SPOT
BIOL 4900.707Special ProblemsFall 2016
BIOL 1720.001Biology for Science Majors IISpring 2016 Syllabus SPOT
BIOL 6950.707Doctoral DissertationSpring 2016
BIOL 1722.003Honors Biology for Science Majors IISpring 2016 Syllabus SPOT
BIOL 3996.739Honors College Mentored Research ExperienceSpring 2016
BIOC 6940.707Individual ResearchSpring 2016
BIOL 6940.707Individual ResearchSpring 2016
BIOL 4800.001Biological Sciences Seminar SeriesFall 2015 Syllabus SPOT
BIOL 5860.001Biological Sciences Seminar SeriesFall 2015 SPOT
BIOL 6950.707Doctoral DissertationFall 2015
BIOL 6940.707Individual ResearchFall 2015
BIOL 6710.001Signaling Mechanism in PlantsFall 2015 SPOT
BIOC 6940.707Individual ResearchSummer 5W1 2015
BIOL 4900.707Special ProblemsSummer 10W 2015
BIOL 1720.001Biology for Science Majors IISpring 2015 Syllabus
BIOL 1720.211Biology for Science Majors IISpring 2015
BIOL 1720.212Biology for Science Majors IISpring 2015
BIOL 1720.213Biology for Science Majors IISpring 2015
BIOL 1720.217Biology for Science Majors IISpring 2015
BIOL 1722.003Honors Biology for Science Majors IISpring 2015 Syllabus
BIOL 1722.205Honors Biology for Science Majors IISpring 2015
BIOC 6940.707Individual ResearchSpring 2015
BIOL 6940.707Individual ResearchSpring 2015
BIOL 4800.001Biological Sciences Seminar SeriesFall 2014 Syllabus
BIOL 5860.001Biological Sciences Seminar SeriesFall 2014
BIOL 6940.707Individual ResearchFall 2014
BIOL 6700.001Plant Interaction with EnvironmentFall 2014
BIOL 6940.707Individual ResearchSummer 5W2 2014
BIOL 4900.707Special ProblemsSummer 10W 2014
BIOL 1720.001Biology for Science Majors IISpring 2014 Syllabus
BIOL 1720.807Biology for Science Majors IISpring 2014 Syllabus
BIOL 1722.003Honors Biology for Science Majors IISpring 2014 Syllabus
BIOC 6940.707Individual ResearchSpring 2014
BIOL 6940.707Individual ResearchSpring 2014
BIOL 4800.001Biological Sciences Seminar SeriesFall 2013 Syllabus
BIOL 5860.001Biological Sciences Seminar SeriesFall 2013
BIOL 6940.707Individual ResearchFall 2013
BIOL 6710.001Signaling Mechanism in PlantsFall 2013
BIOL 4910.707Special ProblemsFall 2013
BIOL 5900.707Special ProblemsFall 2013
BIOC 6940.707Individual ResearchSummer 10W 2013
BIOC 6940.707Individual ResearchSummer 5W1 2013
BIOL 6940.707Individual ResearchSummer 10W 2013
BIOL 4900.707Special ProblemsSummer 10W 2013
BIOL 1722.003Honors Principles of Biology IISpring 2013 Syllabus
BIOL 1722.205Honors Principles of Biology IISpring 2013
BIOL 1722.205Honors Principles of Biology IISpring 2013
BIOC 6940.707Individual ResearchSpring 2013
BIOL 6940.707Individual ResearchSpring 2013
BIOL 1720.001Principles of Biology IISpring 2013 Syllabus
BIOL 1720.211Principles of Biology IISpring 2013
BIOL 1720.211Principles of Biology IISpring 2013
BIOL 1720.212Principles of Biology IISpring 2013
BIOL 1720.212Principles of Biology IISpring 2013
BIOL 1720.213Principles of Biology IISpring 2013
BIOL 1720.213Principles of Biology IISpring 2013
BIOL 1720.217Principles of Biology IISpring 2013
BIOL 1720.217Principles of Biology IISpring 2013
BIOL 4800.001Biological Sciences Seminar SeriesFall 2012 Syllabus
BIOL 5860.001Biological Sciences Seminar SeriesFall 2012
BIOL 6940.707Individual ResearchFall 2012
BIOC 6940.707Individual ResearchSummer 5W1 2012
BIOL 6940.707Individual ResearchSummer 10W 2012
BIOL 6950.707Doctoral DissertationSpring 2012
BIOL 1722.003Honors Principles of Biology IISpring 2012 Syllabus
BIOL 1722.205Honors Principles of Biology IISpring 2012
BIOC 6940.707Individual ResearchSpring 2012
BIOL 6940.707Individual ResearchSpring 2012
BIOC 5950.707Master's ThesisSpring 2012
BIOL 1720.001Principles of Biology IISpring 2012 Syllabus
BIOL 1720.211Principles of Biology IISpring 2012
BIOL 1720.212Principles of Biology IISpring 2012
BIOL 1720.213Principles of Biology IISpring 2012
BIOL 1720.217Principles of Biology IISpring 2012
BIOC 5910.707Special ProblemsSpring 2012
BIOL 4800.001Biological Sciences Seminar SeriesFall 2011 Syllabus
BIOL 5860.001Biological Sciences Seminar SeriesFall 2011
BIOL 6950.707Doctoral DissertationFall 2011
BIOL 6940.707Individual ResearchFall 2011
BIOC 6900.707Special ProblemsFall 2011
BIOL 5005.005TOPICS IN BIOLOGYFall 2011
BIOL 6950.707Doctoral DissertationSummer 5W2 2011
BIOC 6940.707Individual ResearchSummer 5W1 2011
BIOC 5910.707Special ProblemsSummer 5W2 2011
BIOL 6950.707Doctoral DissertationSpring 2011
BIOL 1722.003Honors Principles of Biology IISpring 2011 Syllabus
BIOL 6940.707Individual ResearchSpring 2011
BIOL 1720.001Principles of Biology IISpring 2011 Syllabus
BIOL 4900.707Special ProblemsSpring 2011
BIOL 5900.707Special ProblemsSpring 2011
BIOL 4800.001Biological Sciences Seminar SeriesFall 2010 Syllabus
BIOL 5860.001Biological Sciences Seminar SeriesFall 2010
BIOL 6950.707Doctoral DissertationFall 2010
BIOL 4950.707Honors Thesis in BiologyFall 2010
BIOL 6940.707Individual ResearchFall 2010
BIOC 6910.707Special ProblemsFall 2010
BIOL 4910.707Special ProblemsFall 2010
BIOL 5900.707Special ProblemsFall 2010
BIOL 5005.005TOPICS IN BIOLOGYFall 2010
BIOL 6950.707Doctoral DissertationSummer 5W2 2010
BIOC 6940.707Individual ResearchSummer 5W1 2010
BIOL 6940.707Individual ResearchSummer 5W2 2010
BIOL 4900.707Special ProblemsSummer 5W2 2010
BIOL 4900.707Special ProblemsSummer 10W 2010
BIOL 4900.707Special ProblemsSummer 5W1 2010
BIOL 6900.707Special ProblemsSummer 5W2 2010
BIOL 6950.707Doctoral DissertationSpring 2010
BIOL 1722.003Honors Principles of Biology IISpring 2010
BIOL 6940.707Individual ResearchSpring 2010
BIOL 1720.001Principles of Biology IISpring 2010
BIOL 4800.001Biological Sciences Seminar SeriesFall 2009
BIOL 5860.001Biological Sciences Seminar SeriesFall 2009
BIOL 6950.707Doctoral DissertationFall 2009
BIOL 6940.707Individual ResearchFall 2009
BIOL 4900.707Special ProblemsFall 2009
BIOL 4910.707Special ProblemsSummer 10W 2009
BIOL 6950.707Doctoral DissertationSpring 2009
BIOL 1722.003Honors Principles of Biology IISpring 2009
BIOL 6940.707Individual ResearchSpring 2009
BIOL 1720.001Principles of Biology IISpring 2009
BIOC 5680.001Selected Topics in BiochemistrySpring 2009
BIOL 4900.707Special ProblemsSpring 2009
BIOL 4005.007Contemporary Topics in BiologyFall 2008
BIOL 6940.707Individual ResearchFall 2008
BIOL 5005.007TOPICS IN BIOLOGYFall 2008
BIOL 1722.001Honors Principles of Biology IISpring 2008
BIOL 6940.707Individual ResearchSpring 2008
BIOL 1720.002Principles of Biology IISpring 2008
BIOL 6940.707Individual ResearchFall 2007

Published Intellectual Contributions

    Abstracts and Proceedings

  • Mittal, I., Alam, S.T., Berg, K., Dong, Y., Trick, H., Kolomiets, M., Scofield, S., Shah, J. (2024). Characterizing the contribution of plant 9-lipoxygenase in susceptibility to the Fusarium head blight fungus, Fusarium graminearum. Journal of Biological Chemistry. 300 (3) American Society for Biochemistry and Molecular Biology. https://www.jbc.org/article/S0021-9258(24)01281-X/fulltext
  • Girija, A., Nair, S., Shah, S., Alapatt, B., Twayana, M., Shah, J. (2024). ER-PM contact site regulate plasmodesmal localization of an insect resistance protein in Arabidopsis. Journal of Biological Chemistry. 300 (3) Supplement 106719. American Society for Biochemistry and Molecular Biology. https://www.jbc.org/article/S0021-9258(24)01192-X/fulltext
  • Nalam, V.,Klossner, G., Sarowar, S., Lee, H., Trick, H, and Shah, J.. (2011). Engineering defense regulatory genes and host susceptibility factors for enhancing FHB resistance in wheat.
  • Syyerson, R.L., Elakkad, A.M., Dahleen, L.S., Nalam, V.J., Klossner, G., Shah, J., and Dill-Macky, R.. (2011). Testing transgenic spring wheat and barley lines for reaction to Fusarium head blight: 2011 field nursery report..
  • Makandar, R. and Shah, J.. (2010). Functional genomics play significant role in disease signaling and defense response against fungal pathogen (Fusarium graminearum) in plants..
  • Kachroo, P., Shanklin, J., Shah, J., Whittle, E.J., and Klessig, D.F.. (2001). A Fatty Acid Desaturase Modulates the Activation of Defense Signaling Pathways in Plants.
  • Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M, Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H.. (2000). Nitric oxide and salicylic acid signaling in plant defense.
  • Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M, Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H.. (2000). Nitric oxide and salicylic acid signaling in plant defense.
  • Book

  • Shah, J., Walling, L. (2017). Advances in Plant-Hemipteran Interactions. Other. Lausanne, Frontiers Media.
  • Book Chapter

  • Shah, J., Chowdhury, Z., Chaturvedi, R., Venables, B.J., Giri, M.K., Mohanty, D., Nayek, S., Norton, H., Chao, A., Koh, A., Shah, A., Yagnamurthy, A., Patel, E., Sarowar, S. (2016). Contribution of an Abietane Diterpenoid in Long-distance Signaling Associated with Systemic Acquired Resistance and Transition to Flowering in Plants. Anais da VIII Reunião Brasileira Sobre Inducão de Resistência em Plantas a Patógenos. (Chapter 2) 89-105. Goiania, Gráfica UFG.
  • Shah, J.. (2014). Lipases in signalling plant defense responses..
  • Shah, J. and Chaturvedi, R.. (2013). Long-distance signalling in systemic acquired resistance..
  • Louis, J., Singh, V. and Shah, J.. (2012). Arabidopsis thaliana - Aphid Interaction.
  • Parker, J., Rietz, S., Wirthmüller, L., Bartsch, M., Bautor, J., Pegadaraju, V., Louis, J., Singh, V., Reese, J., and Shah, J.. (2008). Processes in plant resistance to invasive pathogens and probing insects. In "Biology of Plant-Microbe Interactions", Volume 6.
  • Welti R, Isaac G, Tamura P, Esch SW, Sparks A, Jeannotte R, Roth M, Maatta S, Williams TD, Shah J, Wang X.. (2007). "Lipid profiling: Analysis of gene function and physiological responses in Arabidopsis." , bibl. pp. 287-291, Book Published of Collection: C. Benning, J. Ohlrogge, "In Current Advances in the Biochemistry and Cell Biology of Plant Lipids".
  • Welti, R., Roth, M. R., Deng, Y., Shah, J. and Wang, X.; Basil J. Nikolau and Eve Syrkin Wurtele, eds.. (2007). Lipidomics: ESI-MS/MS-based profiling to determine the function of genes involved in metabolism of complex lipids. In "Concepts in Plant Metabolomics".
  • Chaturvedi, R., and Shah, J.. (2006). Salicylic acid in plant disease resistance. In "Salicylic Acid-A Plant Hormone" ed. S. Hayat and A. Ahmad, pp 335-370.
  • Welti, Ruth, Shah, J., LeVine, S., Esch, S. W., Williams, T. D., and Wang, X.. (2005). High throughput lipid profiling to identify and characterize genes involved in lipid metabolism, signaling, and stress response. In "Functional Lipidomics", L. Feng and G.D. Prestwich, eds.
  • Klessig, D.F., Kachroo, P.K., Slaymaker, D., Yoshioka, K., Navarre, D. A., Clark, D., Kumar, D., and Shah, J.. (2002). SA- and NO-mediated signaling in Plant Disease Resistance. In "Biology of Plant-Microbe Interactions", Vol. 3, pp 78-82, ed. S. A. Leong, C. Allen, and E.W. Triplett.
  • Klessig, D.F., Durner, J., Navarre, R., Kumar, D., Shah, J., Zhou, J.M., Zhang, S., Wendehenne, D., Kachroo, P., Silva, H., Yoshioka, K., Trifa, Y., Pontier, D., Lam, E., Chen, Z., Anderson, M. and Du, H.. (2000). Salicylic acid- and nitric oxide-mediated signal transduction in disease resistance. pp. 201-207In "Signal Transduction in Plants: Current Advances", ed. Sopory, S.K., Oelmuller, R., and Maheshwari, S.C., Kluwer.
  • Shah, J., and Klessig, D. F.. (1999). Salicylic acid: Signal perception and transduction. In "Biochemistry and Molecular Biology of Plant Hormones" Vol 33 pg 513-541, ed. K. Libbenga, M. Hall and P. J. J. Hooykaas.
  • Klessig, D. F., Durner, J., Shah, J. and Yang, Y.. (1998). Salicylic acid-mediated signal transduction in Plant Disease Resistance In "Recent Advances in Phytochemistry: Phytochemical signals and Plant-Microbe Interaction", Vol. 32, pp 119-137, ed. J.T.Romeo, K.R. Downum and R. Verporte.
  • Klessig, D. F., Durner, J., Chen, Z., Anderson, M., Conrath, U., Du, H., Guo, A., Liu, Y., Shah, J., Silva, H., Takahashi, H., and Yang, Y.. (1996). Studies of the salicylic acid signal transduction pathway. In: Biology of Plant Microbe Interactions. pp 33-38, ed. G. Stacey, B. Mullin and P. M. Gresshoff.
  • Conference Proceeding

  • Marpu, S., Kolailat, S., Charturvedi, R., Shah, J., Hu, Z., Omary, M.A. (2010). Antimicrobial studies of biocompatible colloidal silver nanoparticles with tunable visible to near-infrared plasmonic absorptions. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. 240
  • Critical Review

  • Nalam, V., Louis, J., Shah, J. (2019). Plant defense against aphids, the pest extraordinaire. Plant Science. 279 96-107. https://doi.org/10.1016/j.plantsci.2018.04.027
  • Shah, J., Chaturvedi, R. (2018). Lipid signals in plant-pathogen interaction. Annual Plant Reviews. Book series: Molecular Aspects of Plant Disease Resistance
  • Editorial

  • Goggin, F.L., Shah, J., Gillaspy, G. (2022). Editorial: Lipid Metabolism and Membrane Structure in Plant Biotic Interactions. Frontiers in Plant Science. Lipid Metabolism and Membrane Structure in Plant Biotic Interactions.
  • Journal Article

  • Archer, L., Mondal, H., Behera, S., Twayana, M., Louis, J., Nalam, V., Keereetaweep, J., Chowdhury, Z., Shah, J. (2023). Interplay between MYZUS PERSICAE INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erad355
  • Lusk, H., Neumann, N., Colter, M., Roth, M., Tamura, P., Yao, L., Shiva, S., Finnigan, G., Shah, J., Schrick, K., Durrett, T., Welti, R. (2022). Lipidomic Analysis of Arabidopsis T-DNA Insertion Lines Leads to Identification and Characterization of C-Terminal Alterations in FATTY ACID DESATURASE6. Plant Cell Physiology. 63 (9) 1193-1204. https://doi.org/10.1093/pcp/pcac088
  • Alam, S.T., Sarowar, S., Mondal, H., Makandar, R., Chowdhury, Z., Louis, J., Shah, J. (2022). Opposing effects of MYZUS PERSICAE-INDUCED LIPASE 1 and jasmonic acid influence the outcome of Arabidopsis thaliana-Fusarium graminearum interaction. Molecular Plant Pathology. 23 1141-1153. https://doi.org/10.1111/mpp.13216
  • Dongus, J.A., Bhandari, D., Penner, E., Lapin, D., Harzen, A., Stolze, S., Patel, M., Archer, L., Dijkgraaf, L., Shah, J., Nakagami, H., Parker, J.E. (2022). Cavity surface residues of PAD4 and SAG101 contribute to EDS1 dimer signaling specificity in plant immunity. The Plant journal : for cell and molecular biology. Wiley.
  • Twayana, M., Girija, A.M., Mohan, V., Shah, J. (2022). Phloem: At the center of action in plant defense against aphids. Journal of Plant Physiology. https://doi.org/10.1016/j.jplph.2022.153695
  • Vu, H.S., Shiva, S., Samarakoon, T., Li, M., Sarowar, S., Roth, M., Tamura, P., Honey, S., Lowe, K., Poras, H., Prakash, N., Roach, C., Stuke, M., Wang, X., Shah, J., Gadbury, G., Wang, H., Welti, R. (2022). Specific changes in Arabidopsis thaliana rosette lipids during freezing can be associated with freezing tolerance. Metabolites. (12) 385. MDPI. https://doi.org/10.3390/metabo12050385
  • Chaturvedi, R., Giri, M., Chowdhury, Z., Mohanty, D., Venables, B.J., Petros, R., Shah, J. (2020). CYP720A1 function in roots is required for flowering time and systemic acquired resistance in the foliage of Arabidopsis. Journal of Experimental Botany. 71 (20) 6612–6622.
  • Shiva, S., Samarakoon, T., Lowe, K., Roach, C., Vu, H.S., Colter, M., Poras, H., Hwang, C., Roth, M., Tamura, P., Li, M., Schrick, K., Shah, J., Wang, X., Wang, H., Welti, R. (2020). Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants. 9 (7) 845. MDI. https://www.mdpi.com/2223-7747/9/7/845
  • Chowdhury, Z., Mohanty, D., Giri, M., Venables, B.J., Chaturvedi, R., Chao, A., Petros, R.A., Shah, J. (2020). Dehydroabietinal promotes flowering time and plant defense via the autonomous pathway genes FLD, FVE and REF6. Journal of Experimental Botany. 71 4903-4913. https://doi.org/10.1093/jxb/eraa232
  • Dongus, J.A., Bhandari, D., Patel, M., Archer, L., Dijkgraaf, L., Deslandes, L., Shah, J., Parker, J.E. (2020). Arabidopsis PAD4 lipase-like domain is a minimal functional unit in resistance to green peach aphid. Molecular Plant-Microbe Interactions. 33 (2) 328-335.. American Phytopathological Society.
  • Sarowar, S., Alam, S.T., Makandar, R., Lee, H., Trick, H.N., Dong, Y., Shah, J. (2019). Targeting the pattern-triggered immunity pathway for enhancing resistance to Fusarium graminearum. Molecular Plant Pathology. 20 (5) 626–640. https://doi.org/10.1111/mpp.12781
  • Nalam, V., Louis, J., Patel, M., Shah, J. (2018). Arabidopsis-green Peach Aphid Interaction: Rearing the Insect, No-choice and Fecundity Assays, and Electrical Penetration Graph Technique to Study Insect Feeding Behavior. Bio-Protocol. 8 (15) 1-24. www.bio-protocol.org/e2950
  • Gallego-Giraldo, L., Pose, S., Pattahil, S., Peralta, A.G., Hahn, M.G., Ayre, B.G., Sunuwar, J., Hernandez, J., Patel, M., Shah, J., Rao, X., Knox, J., Dixon, R. (2018). Elicitors and defense gene induction in plants with altered lignin compositions. New Phytologist. 219 1235-1251.
  • Mondal, H., Louis, J., Archer, L., Patel, M., Nalam, V., Sarowar, S., Sivapalan, V., Root, D.D., Shah, J. (2018). Arabidopsis thaliana ACTIN DEPOLYMERISING FACTOR 3 is required for controlling aphid feeding from the phloem. Plant Physiology. 176 879-890. American Society of Plant Biologists.
  • Marpu, S., Kolailat, S.S., Korir, D., Kamras, B.L., Chaturvedi, R., Joseph, A., Smith, C.M., Palma, M.C., Shah, J., Omary, M.A. (2017). Photochemical formation of chitosan-stabilized near-infrared-absorbing silver Nanoworms: A "Green" synthetic strategy and activity on Gram-negative pathogenic bacteria.. Other. 507 437-452.
  • Shah, J., Walling, L. (2017). Editorial: Advances in plant-hemipteran interactions. Frontiers in Plant Science. Advances in plant-hemipteran interactions. 8 1652.
  • Nalam, V.J., Sarowar, S., Shah, J. (2016). Establishment of a Infection Model in Arabidopsis Leaves and Floral Tissues. Bio-Protocol. 6 (14) e1877. http://www.bio-protocol.org/e1877
  • Nalam, V. J., Alam, S., Keereetaweep, J., Venables, B., Burdan, D., Lee, H., Trick, H.N., Sarowar, S., Makandar, R., and Shah, J.. (2015). Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Molecular Plant-Microbe Interactions. 28 1142-1152.
  • Vu, H. S., Roston, R., Shiva, S., Hur, M., Wurtele, E. S., Wang, X., Shah, J., and Welti, R.. (2015). Modifications of membrane lipids in response to wounding of Arabidopsis thaliana leaves.. Plant Signaling & Behavior. 10 e1056422.
  • Louis, J., and Shah, J. (2015). Plant defense against aphids: The PAD4 signaling nexus. Journal Experimental Botany. 66 449-454. http://jxb.oxfordjournals.org/content/66/2/449
  • Makandar R, Nalam VJ, Chowdhury Z, Sarowar S, Klossner G, Lee H, Burdan D, Trick HN, Gobbato E, Parker JE, and Shah J.. (2015). The combined action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4 and SENESCENCE-ASSOCIATED101 promotes salicylic acid-mediated defenses to limit Fusarium graminearum infection in Arabidopsis thaliana.. Molecular Plant-Microbe Interactions. 28 943-953.
  • Welti, R., Shiva, S., Vu, H., Roth, M., Tamura, P., Samarakoon, T., Colter, M., Sarowar, S., Li, M., Gadbury, G., Wang, X., and Shah, J.. (2015). Using lipidomics to probe lipid metabolism. FASEB Journal. 29 (Supplement 220.3)
  • Petros, R.A., and Shah, J.. (2014). Evaluation of the efficiency of Pd/H2-catalyzed benzylic H/D exchange of dehydroabietinal with D2O and synthesis of a tritium-labeled analogue..
  • Vu, H. S., Shiva, S., Roth, M. R., Tamura, P., Zheng, L., Li, M., Sarowar, S., Honey, S., McElhiney, D., Hinkes, P., Seib, L., William T. D., Gadbury, G., Wang, X., Shah, J., and Welti, R.. (2014). Lipid changes after leaf wounding in Arabidopsis thaliana: Expanded lipidomic data form the basis for lipid co-occurrence analysis..
  • Shah, J., Chaturvedi, R., Chowdhury, R., Venables, B., and Petros, R. A.. (2014). Signaling small metabolites in systemic acquired resistance.
  • Louis, J. and Shah, J.. (2013). Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids..
  • Singh, V., Roy, S., Giri, M.K., Chaturvedi, R., Chowdhury, Z., Shah, J., and Nandi, A.K.. (2013). Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance..
  • Nalam, V. J., Shah, J., and Nachappa, P.. (2013). Emerging role of roots in plant responses to aboveground insect herbivory ..
  • Zheng, L., Gadbury, G.L., Shah, J., and Welti, R.. (2013). Exploration of reactant-product pairs in mutant-wild type lipidomics experiments.
  • Shah, J. and Zeier J.. (2013). Long-distance communication and signal amplification in systemic acquired resistance..
  • Cao, T., Lahiri, I., Singh, V., Louis, J., Shah, J., Ayre, B.G. (2013). Metabolic engineering of raffinose-family oligosaccharides in the phloem reveals alterations in carbon partitioning and enhances resistance to green peach aphid. Frontiers in Plant Science. 4 (263) http://www.frontiersin.org/Journal/Abstract.aspx?s=907&name=plant_physiology&ART_DOI=10.3389/fpls.2013.00263!!!
  • Cao, T., Lahiri, I., Singh, V., Louis, J., Shah, J, and Ayre B.G.. (2013). Metabolic engineering of raffinose-family oligosaccharides in the phloem reveals alterations in carbon partitioning and enhances resistance to green peach aphid..
  • Suzuki, N., Miller, G., Salazar, C., Mondal, H.A., Shulaev, E., Cortes, D. F., Shuman, J. L., Luo, X., Shah, J., Schlauch, K., Shulaev, V., and Mittler, R.. (2013). Temporal-spatial interaction between ROS and ABA controls rapid systemic acclimation in plants..
  • Nalam, V.J., Keereetaweep, J, Shah, J.. (2013). The green peach aphid, Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin from Arabidopsis thaliana, which promotes colonization of the host plant..
  • Suzuki, N., Miller, G., Salazar, C., Mondal, H.A., Shulaev, E., Cortes, D.F., Shuman, J.L., Luo, X., Shah, J., Schlauch, K., Shulaev, V., Mittler, R. (2013). Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants.. The Plant Cell. 25 (9) 3553-69.
  • Chaturvedi, R, Venables, B., Petros, R.A., Nalam, V., Li, M., Wang, X., Takemoto, L.J., and Shah, J.. (2012). An abietane diterpenoid is a potent activator of systemic acquired resistance.
  • Lorenc-Kukula, K., Chaturvedi, R., Roth, M., Welti, R., and Shah, J.. (2012). Biochemical and molecular-genetic characterization of the Arabidopsis thaliana SFD1-encoded dihydroxyacetone phosphate reductase..
  • Vu, H.S., Tamura, P., Galeva, N.A., Chaturvedi, R., Williams, T.D., Wang, X., Shah, J., and Welti, R.. (2012). Direct infusion mass spectrometry of oxylipin-containing Arabidopsis thaliana membrane lipids reveals varied patterns in different stress responses..
  • Louis, J., Gobbato, E., Mondal, H.A., Parker, J., and Shah, J.. (2012). Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens.
  • Louis, J., Mondal, H.A., and Shah, J.. (2012). Green peach aphid infestation induces Arabidopsis PHYTOALEXIN-DEFICIENT4 expression at site of insect feeding..
  • Nalam, V., Keeretaweep, J., Sarowar, S., and Shah, J.. (2012). Root-derived oxylipins promote aphid performance on Arabidopsis thaliana foliage.
  • Makandar, R., Nalam, V., Lee, H., Trick, H.N., Dong, Y., and Shah, J.. (2012). Salicylic acid regulates basal resistance to Fusarium head blight in wheat..
  • Singh, V., and Shah, J.. (2012). Tomato responds to green peach aphid infestation with the activation of trehalose metabolism and starch accumulation..
  • Swain, S., Roy, S., Shah, J., Wees, S., Pieterse, C., Nandi, A.. (2011). Arabidopsis thaliana cdd1 mutant uncouples constitutive activation of salicylic acid signaling from growth defects.
  • Singh, V., Louis, J., Ayre, B.G., Reese, J.C., and Shah, J.. (2011). TREHALOSE PHOSPHATE SYNTHASE11 -dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect, Myzus persicae..
  • Singh, V., Louis, J., Ayre, B.G., Reese, J., Shah, J. (2011). TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism regulates Arabidopsis thaliana defense against the phloem-feeding insect, Myzus persicae. The Plant journal : for cell and molecular biology. 67 94-104.
  • Louis, J., Kukula, K.-L., Singh, V., Reese, J.C., Jander, G., and Shah, J.. (2010). Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene..
  • Makandar, R., Nalam, V., Chaturvedi, R., Jeannotte, R., Sparks, A.A., and Shah, J.. (2010). Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum..
  • Louis, J., Leung, Q., Pegadaraju, V., Reese, J., and Shah, J.. (2010). PAD4 -dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid..
  • Parkhi, V., Kumar, V., Campbell, L.M., Bell, A. A., Shah, J., and Rathore, K.S.. (2010). Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1..
  • Nalam, V., Makandar, R., McAfee, D., Essig, J., Lee, H., Trick, H., and Shah, J.. (2009). Host factors contributing to resistance and susceptibility to Fusarium graminearum- role of lipoxygenases.
  • Shah, J.. (2009). Plants under attack: systemic signals in defense.
  • Dahleen, L., R. Dill-Macky, J. Shah, G. Muehlbauer, R. Skadsen, M. Manoharan, T. Abebe and J. Jurgenson.. (2009). Transgenic field trials for FHB resistance and related research in wheat and barley..
  • Sekine, K.-T., Kawakami, S., Hase, S., Kubota, M., Ichinose, Y., Shah, J., Kang, H.G., Klessig, D.F., and Takahashi, H.. (2008). High level expression of a virus resistance gene, RCY1, confers extreme resistance to Cucumber mosaic virus in Arabidopsis thaliana.
  • Shah, J., and Chaturvedi, R.. (2008). Lipid signals in plant-pathogen interaction.
  • Ishihara, T., Sekine, K.-T., Hase, S., Kanayama, Y., Seo, S., Ohashi, Y., Kusano, T., Shibata, D., Shah, J. and Takahashi, H.. (2008). Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses.
  • Chaturvedi, R., Krothapalli, K., Makandar, R., Nandi, A., Sparks, A., Roth, M., Welti, R. and Shah, J.. (2008). Plastid w -3 desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid.
  • Pegadaraju, V., Louis, J., Singh, V., Reese, J.C., Bautor, J., Feys, B.J., Cook, G., Parker, J.E. and Shah, J.. (2007). Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1.
  • Welti, R., Shah, J., Li, W., Li, M., Chen, J. Burke, J.J., Fauconnier, M.L., Chapman, K., Chye, M.L., and Wang, X.. (2007). Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry.
  • Makandar, R., Essig, J. S., Schapaugh, M. A., Trick, H. N. and Shah, J.. (2006). Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1.
  • Sekine, K.T., Ishihara, T., Hase, S., Kusano, T., Shah, J., and Takahashi, H.. (2006). Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death.
  • Buseman, C. M., Tamura, P., Sparks, A. A., Baughman, E. J., Maatta, s., Zhao, J., Roth, M. R., Esch, S.W., Shah, J., Williams, T. D., and Welti, R.. (2006). Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves.
  • Shah, J.. (2005). Lipids, lipases and lipid modifying enzymes in plant disease resistance.
  • Pegadaraju, V., Reese, J., and Shah, J.. (2005). Premature leaf senescence modulated by the Arabidopsis thaliana PAD4 gene is associated with defense against the phloem-feeding green peach aphid.
  • Nandi, A., Moeder, W., Kachroo, P., Klessig, D.F. and Shah, J.. (2005). The Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4.
  • Takahashi, H., Kanayama, Y., Zheng, M.S., Kusano, T., Natsuaki, T., Hase, S., Ikegami, M., and Shah, J.. (2004). Antagonistic interactions between the SA- and JA-signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus.
  • Sekine, K.T., Nandi, A., Ishihara, T., Hase, S., Ikegami, M., Shah, J., and Takahashi, H.. (2004). Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism.
  • Shah, J., Nandi, A., Buseman, C.M., Li, M., Krothapalli, K., Pegadaraju, V., Buffington, R., Morton, J., Omoluabi, O., Baughman, E., and Welti, R.. (2004). Salicylic acid signaling in plant defense: the lipid connection. In "Biology of Molecular Plant-Microbe Interaction", Vol. 4, pp 391-393, ed. I. Tikhonovich, B. Lugetenberg, and N. Provorov.
  • Nandi, A., Welti, R., and Shah, J.. (2004). The Arabidopsis thaliana dihydroxyacetone phosphate reductases gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance.
  • Zheng, M.S., Takahashi, H., Miyazaki, A., Hamamoto, H., Shah, J., Yamaguchi, I., and Kusano, T.. (2004). Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signaling pathways that differ in salicylate involvement.
  • Nandi, A., Kachroo, P., Fukushige, H., Hildebrand, D.F., Klessig, D.F., and Shah, J.. (2003). Ethylene and jasmonic acid signaling pathways affect NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant.
  • Nandi, A., Krothapalli, K., Buseman, C., Li, M., Welti, R., Enyedi, A., and Shah, J.. (2003). The Arabidopsis thaliana sfd Mutants Affect Plastidic Lipid Composition and Suppress Dwarfing, Cell Death and the Enhanced Disease Resistance Phenotypes Resulting from the Deficiency of a Fatty Acid Desaturase.
  • Shah, J.. (2003). The SA loop in plant defense.
  • Shirano, Y., Kachroo, P., Shah, J., and Klessig, D.F.. (2002). A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-Leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance.
  • Leach, J.E. and Shah, J.. (2002). Future prospects for developing disease resistant plants.
  • Takahashi, H., Miller, J., Nozaki, Y., Sukamoto, Takeda, M., Shah, J., Hase, S., Ikegami, M., Ehara, Y., and Dinesh-Kumar, S.P.. (2002). RCY1 , an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism.
  • Shah, J., Kachroo, P.K., Nandi, A., and Klessig, D.F.. (2001). A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens.
  • Yoshioka, K., Kachroo, P.K., Tsui, F., Sharma, S.B., Shah, J., and Klessig, D.F.. (2001). Environmentally-sensitive SA-dependent defense responses in the cpr22 mutant of Arabidopsis.
  • 36. Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J. and Klessig, D.F.. (2000). Npr1 differentially interacts with members of the TGA/OBF family of transcription factors which bind an element of the PR-1 gene required for induction by salicylic acid.
  • Kachroo, P., Yoshioka, K., Shah, J. and Klessig, D.F.. (2000). Resistance to turnip crinkle virus in Arabidopsis requires two host genes and is salicylic acid dependent but NPR1, ethylene and Jasmonate independent.
  • Dempsey, D.A., Shah, J. and Klessig, D.F.. (1999). Salicylic acid and disease resistance in plants.
  • Dempsey, D.A., Shah, J. and Klessig, D.F.. (1999). Salicylic acid and disease resistance in plants.
  • Shah, J., Kachroo, P. and Klessig, D. F.. (1999). The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression SA dependent.
  • Shah, J., Tsui, F., and Klessig, D. F.. (1997). Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana identified in a selective screen utilizing the salicylic acid-inducible expression of the tms2 gene.
  • Durner, J., Shah, J., and Klessig, D. F.. (1997). Salicylic acid and disease resistance in plants.
  • Yang, Y., Shah, J., and Klessig, D. F.. (1997). Signal perception and transduction in plant defense responses.
  • Shah, J., and Klessig, D. F.. (1996). Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related 1,3-glucanase gene, PR-2d.
  • Shah, J., and Clancy, M.. (1992). IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae.
  • Kao, G., Shah, J., and Clancy, M.. (1990). An RME1-independent pathway for sporulation control in Saccharomyces cerevisiae acts through IME1 transcript accumulation.
  • Pugh, T. A., Shah, J., Magee, P. T., and Clancy, M.. (1989). Characterization and cellular localization of sporulation glucoamylase of Saccharomyces cerevisiae.
  • Manuscript

  • Shah, J., Giri, M., Chowdhury, Z., Venables, B.J. (2016). Signaling function of dehydroabietinal in plant defense and development. Phytochemistry Reviews. 15 1115–1126. http://link.springer.com/article/10.1007/s11101-016-9466-0
  • Proceedings

  • Montoya, B., Mittal, I., Scofield, S., Shah, J., Meckes, B. (2022). Spherical Nucleic Acids for Fusarium graminearum gene regulatio. Other. Minneapolis, Minnesota, US Wheat and Barley Scab Initiative.
  • Mittal, I., Alam, S., Chabra, B., Shulaev, E., Mohan, V., Girija, A., Rawat, N., Dong, Y., Trick, H.N., Scofield, S., Shah, J. (2022). Targeting Susceptibility Genes in Wheat to Enhance Resistance Against Fusarium Head Blight. Other. Minneapolis, Minnesota, US Wheat and Barley Scab Initiative.
  • Montoya, B., Mittal, I., Shah, J., Meckes, B. (2021). Development of Biocompatible siRNA Nanoparticles to Mitigate FHB in Wheat. Other. 50. US Wheat and Barley Scab Initiative. https://scabusa.org/forum/2021/2021NFHBForumProceedings.pdf
  • Mittal, I., Alam, S., Chabra, B., Shulaev, E., Mohan, V., Dong, Y., Scofield, S., Rawat, N., Shah, J. (2021). Knockdown of Lpx3 Function in Wheat Enhances FHB Resistance and Lowers DON Content. Other. 49. Denton, US Wheat and Barley Scab Initiative. https://scabusa.org/forum/2021/2021NFHBForumProceedings.pdf
  • Mohan, V., Alam, S., Shulaev, E., Lee, H., Trick, H.N., Shah, J. (2020). Enhancing wheat resistance to Fusarium graminearum via host-induced gene silencing (HIGS) of the fungal virulence gene FGL1. Other. St. Paul, MN, US Wheat and Barley Scab Initiative.
  • Mittal, I., Alam, S., Chabra, B., Shulaev, E., Mohan, V., Rawat, N., Shah, J. (2020). Targeting Wheat Genes Associated with Susceptibility to Fusarium graminearum for Enhancing FHB Resistance. Other. Denton, US Wheat and Barley Scab Initiative. 1155 Union Circle, #305220
  • Shah, J., Alam, S., Mohan, V., Shulaev, E., Nagarajan, A., Gill, J., Tyagi, N., Lee, H., Trick, H.N. (2019). Targeting fungal virulence genes via host-induced gene silencing (HIGS) for enhancing plant resistance to Fusarium graminearum.. Other. St. Paul, MN, US Wheat and Barley Scab Initiative.
  • Shah, J., Alam, S., Chabra, B., Mohan, V., Shulaev, E., Nagarajan, A., Gill, J., Rawat, N. (2019). Targeting Wheat Genes Associated with Susceptibility to Fusarium graminearum for Enhancing FHB Resistance. Other. Denton, US Wheat and Barley Scab Initiative. 1155 Union Circle, #305220
  • Dill-Macky, R., Curland, R.D., Zargaran, B., Muehlbauer, G.J., Bethke, G., Funnell-Harris, D., Shah, J., McLaughlin, J., Tumer, N. (2019). Testing Transgenic Spring Wheat and Barley Lines for Reaction to Fusarium Head Blight: 2019 Field Nursery Report.. Other. St. Paul, MN, US Wheat and Barley Scab Initiative.
  • Alam, S., Tyagi, N., Trick, H.N., Shah, J. (2018). Host-induced gene silencing (HIGS) for enhancing resistance to Fusarium graminearum. Other. St. Paul, MN, US Wheat and Barley Scab Initiative.
  • Alam, S., Chabra, B., Rawat, N., Shah, J. (2018). Targeting Wheat Genes Associated with Susceptibility to Fusarium graminearum for Enhancing FHB Resistance. Other. St. Paul, MN, US Wheat and Barley Scab Initiative.
  • Shah, J., Rawat, N., Alam, S. (2017). Targeting wheat genes associated with susceptibility to Fusarium graminearum for enhancing FHB resistance. Other. 52. Lexington, KY, US Wheat and Barley Scab Initiative.

Contracts, Grants and Sponsored Research

    Grant - Research

  • Ayre, B.G., McGarry, R.C., Macias, V.M., Horn, P., Shah, J., "A Laser Microdissection System to Enhance Agricultural and Food Research in the North Texas and Southern Oklahoma Region," sponsored by USDA NIFA Equipment Grants Program, Federal, $341019 Funded. (2023 - 2027).
  • Shah, J. (Principal), "Facilitation of Fusarium graminearum invasiveness by 9-lipoxygenase," sponsored by US Department of Agriculture, Federal, $493867 Funded. (2020 - 2025).
  • Shah, J. (Principal), "Mitigate FHB in wheat by knockdown of defense repressors," sponsored by US Department of Agriculture, Federal, $193532 Funded. (2022 - 2025).
  • Ayre, B.G. (Principal), McGarry, R.C. (Co-Principal), Shah, J. (Co-Principal), "Generating pathogen- and pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways," sponsored by USDA National Institute of Food and Agriculture (NIFA), Agriculture and Food Research Initiative (AFRI), Federal, $294000 Funded. (2021 - 2024).
  • Shah, J. (Principal), Meckes, B. (Co-Principal), "Spherical nucleic acid nanomaterials as fungicide and FHB resistance-promoting agents," sponsored by Agricultural Research Service, Federal, $115942 Funded. (2022 - 2024).
  • Shah, J. (Principal), Rawat, N. (Co-Principal), "Wheat Variants Deficient in a FHB Susceptibility Factor," sponsored by US Department of Agriculture, Federal, $145634 Funded. (2020 - 2022).
  • Shah, J. (Principal), "RNA-Interference Targeting of Fungal Genes for Enhancing FHB Resistance," sponsored by US Department of Agriculture, Federal, $84886 Funded. (2020 - 2021).
  • Meckes, B. (Co-Principal), Shah, J. (Co-Principal), "Plant Exosome Mimics for Gene Regulation in Fungal Species Affecting Crops," sponsored by COS-CENG, University of North Texas, $10000 Funded. (2021 - 2021).
  • Shah, J., "Developing Resistance to Fusarium Head Blight in Wheat," sponsored by US Department of Agriculture, Federal, $63650 Funded. (2019 - 2019).
  • Shah, J. (Principal), "RNA-Interference Targeting of Fungal Genes for Enhancing FHB Resistance," sponsored by US Department of Agriculture, Federal, $35486 Funded. (2018 - 2019).
  • Shah, J. (Principal), Rawat, N. (Co-Principal), "Wheat Variants Deficient in a FHB Susceptibility Factor," sponsored by US Department of Agriculture, Federal, $54000 Funded. (2018 - 2019).
  • Hao, H. (Principal), Shah, J. (Principal), "Abietane Diterpenoid Regulated Signaling Gene Network in Plant Development and Defense," sponsored by College of Science, University of North Texas, $5000 Funded. (2018 - 2018).
  • Shah, J. (Principal), "RNA-Interference Targeting of Fungal Genes for Enhancing FHB Resistance," sponsored by US Department of Agriculture, Federal, $24955 Funded. (2017 - 2018).
  • Shah, J. (Principal), Rawat, N. (Co-Principal), "Wheat Variants Deficient in a FHB Susceptibility Factor," sponsored by US Department of Agriculture, Federal, $21802 Funded. (2017 - 2018).
  • Shah, J. (Principal), "Engineering scab resistance in wheat with defense signaling genes," sponsored by USDA and US Wheat and Barley Scab Initiative, Federal, $174824 Funded. (2013 - 2018).
  • Shah, J. (Principal), "Collaborative Research: Lipidomic Profiling, Dynamics, and Functions of Head-Group Acylation of Membrane Lipids in Plant Stress Responses," sponsored by NSF, Federal, $75517 Funded. (2014 - 2016).
  • Shah, J. (Principal), "Dehydroabietinal Signaling in Plant Defense," sponsored by NSF, Federal, $299999 Funded. (2012 - 2016).
  • Shah, J. (Principal), "REU: Role of the Arabidopsis thaliana TPS11 gene and trehalose," sponsored by NSF-IOS, Federal, $6000 Funded. (2012 - 2014).
  • Ayre, B.G. (Principal), Shah, J. (Co-Principal), McGarry, R.C. (Co-Principal), "Generating pathogen- / pest-resistant non-GMO cotton through targeted genome editing of oxylipin signaling pathways," sponsored by U.S. Department of Agriculture, FED, Funded. (2021 - 2024).
  • Shah, J. (Principal), "Facilitation of Fusarium graminearum invasiveness by plant 9-lipoxygenase," sponsored by U.S. Department of Agriculture, FED, Funded. (2020 - 2023).
  • Meckes, B.R. (Co-Principal), Shah, J. (Principal), "Molecular-genetic approaches to mitigate Fusarium head blight disease in wheat," sponsored by Agricultural Research Service, FED, Funded. (2021 - 2022).
  • Shah, J. (Principal), "RNA-Interference Targeting of Fungal Genes for Enhancing FHB Resistance," sponsored by US Department of Agriculture, Federal, Funded. (2020 - 2022).
  • Shah, J. (Principal), Rawat, N. (Co-Principal), "Wheat Variants Deficient in a FHB Susceptibility Factor," sponsored by US Department of Agriculture, Federal, Funded. (2020 - 2022).
  • Shah, J. (Principal), "Developing Resistance to Fusarium Head Blight in Wheat," sponsored by U.S. Department of Agriculture, FED, Funded. (2020 - 2021).
  • Shah, J. (Principal), "Developing Resistance to Fusarium Head Blight in Wheat," sponsored by U.S. Department of Agriculture, FED, Funded. (2017 - 2021).
  • Shah, J., "Developing Resistance to Fusarium Head Blight in Wheat," sponsored by US Department of Agriculture, Federal, Funded. (2019 - 2020).
  • Shah, J. (Principal), "RNA-Interference Targeting of Fungal Genes for Enhancing FHB Resistance," sponsored by US Department of Agriculture, Federal, Funded. (2018 - 2019).
  • Shah, J. (Principal), Rawat, N. (Co-Principal), "Wheat Variants Deficient in a FHB Susceptibility Factor," sponsored by US Department of Agriculture, Federal, Funded. (2018 - 2019).
  • Shah, J. (Principal), Rawat, N. (Co-Principal), "Wheat Variants Deficient in a FHB Susceptibility Factor," sponsored by US Department of Agriculture, Federal, Funded. (2017 - 2018).
  • Shah, J. (Principal), "Targeting Host Defense Mechanism for Enhancing FHB Resistance in Wheat," sponsored by U.S. Department of Agriculture, FED, Funded. (2013 - 2018).
  • Shah, J. (Principal), "Collaborative Research: Lipidomic Profiling, Dynamics, and Functions of Head-Group Acylation of Membrane Lipids in Plant Stress Responses," sponsored by National Science Foundation, FED, Funded. (2014 - 2016).
  • Venables, B.J. (Co-Principal), Shah, J. (Principal), Petros, R.A. (Co-Principal), "Dehydroabietinal Signaling in Plant Defense," sponsored by National Science Foundation, FED, Funded. (2012 - 2016).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE