Skip to main content

Kiko Kawamura

Title: Principal Lecturer

Department: Mathematics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • SCD, Nara Women's University, Japan, 1998
    Major: Mathematics
    Dissertation: On a classification of self-similar sets
  • MS, Nara Women's University, Japan, 1995
    Major: Mathematics
    Dissertation: A few remarks on real functions with fractal properties
  • BS, Ritsumeikan University, Japan, 1993
    Major: Mathematics

Current Scheduled Teaching

MATH 3680.400Applied StatisticsSpring 2025
MATH 3180.001Probability for EngineersSpring 2025
MATH 1780.400Probability ModelsSpring 2025
MATH 3680.410Applied StatisticsFall 2024 Syllabus
MATH 3680.420Applied StatisticsFall 2024 Syllabus
MATH 1780.420Probability ModelsFall 2024 Syllabus
MATH 4900.706Special ProblemsFall 2024

Previous Scheduled Teaching

MATH 3680.400Applied StatisticsSummer 10W 2024 Syllabus SPOT
MATH 1780.410Probability ModelsSummer 10W 2024 Syllabus SPOT
MATH 3680.510Applied StatisticsFall 2023 Syllabus SPOT
MATH 3680.520Applied StatisticsFall 2023 Syllabus SPOT
MATH 1720.620Calculus IIFall 2023 Syllabus SPOT
MATH 3180.001Probability for EngineersFall 2023 Syllabus SPOT
MATH 1780.510Probability ModelsFall 2023 Syllabus SPOT
MATH 3680.400Applied StatisticsSummer 10W 2023 Syllabus
MATH 3680.400Applied StatisticsSpring 2023 Syllabus SPOT
MATH 3680.420Applied StatisticsSpring 2023 Syllabus SPOT
MATH 4610.001ProbabilitySpring 2023 Syllabus SPOT
MATH 3680.510Applied StatisticsFall 2022 Syllabus SPOT
MATH 1780.510Probability ModelsFall 2022 Syllabus SPOT
MATH 1780.520Probability ModelsFall 2022 Syllabus SPOT
MATH 3680.001Applied StatisticsSpring 2022 Syllabus SPOT
MATH 3680.400Applied StatisticsSpring 2022 Syllabus SPOT
MATH 3680.420Applied StatisticsSpring 2022 Syllabus SPOT
MATH 1780.400Probability ModelsSpring 2022 Syllabus SPOT
MATH 3680.510Applied StatisticsFall 2021 Syllabus SPOT
MATH 1720.610Calculus IIFall 2021 Syllabus SPOT
MATH 1720.611Calculus IIFall 2021
MATH 1720.612Calculus IIFall 2021
MATH 1720.613Calculus IIFall 2021
MATH 1720.614Calculus IIFall 2021
MATH 1780.510Probability ModelsFall 2021 Syllabus SPOT
MATH 1780.515Probability ModelsFall 2021 Syllabus SPOT
MATH 1780.520Probability ModelsFall 2021 SPOT
MATH 4900.702Special ProblemsSummer 8W1 2021
MATH 3680.002Applied StatisticsSpring 2021 Syllabus SPOT
MATH 3680.004Applied StatisticsSpring 2021 Syllabus SPOT
MATH 1780.004Probability ModelsSpring 2021 Syllabus SPOT
MATH 4900.702Special ProblemsSpring 2021
MATH 1780.001Probability ModelsFall 2020 Syllabus SPOT
MATH 1780.002Probability ModelsFall 2020 Syllabus SPOT
MATH 1780.003Probability ModelsFall 2020 Syllabus SPOT
MATH 1780.004Probability ModelsFall 2020 Syllabus SPOT
MATH 4910.702Special ProblemsFall 2020
MATH 3680.500Applied StatisticsSummer 10W 2020 Syllabus SPOT
MATH 3680.501Applied StatisticsSummer 10W 2020 SPOT
MATH 3680.510Applied StatisticsSummer 10W 2020 Syllabus SPOT
MATH 3680.001Applied StatisticsSpring 2020 Syllabus
MATH 3680.002Applied StatisticsSpring 2020 Syllabus
MATH 3680.004Applied StatisticsSpring 2020 Syllabus
MATH 1780.003Probability ModelsSpring 2020 Syllabus
MATH 4900.703Special ProblemsSpring 2020
MATH 3680.004Applied StatisticsFall 2019 Syllabus SPOT
MATH 3680.005Applied StatisticsFall 2019 Syllabus SPOT
MATH 1780.002Probability ModelsFall 2019 Syllabus SPOT
MATH 1780.003Probability ModelsFall 2019 Syllabus SPOT
MATH 3410.001Differential Equations ISpring 2019 Syllabus SPOT
MATH 3410.004Differential Equations ISpring 2019 Syllabus SPOT
MATH 2730.001Multivariable CalculusSpring 2019 Syllabus SPOT
MATH 2730.002Multivariable CalculusSpring 2019 Syllabus SPOT
MATH 3410.003Differential Equations IFall 2018 Syllabus SPOT
MATH 3410.005Differential Equations IFall 2018 Syllabus SPOT
MATH 3410.006Differential Equations IFall 2018 Syllabus SPOT
MATH 3410.007Differential Equations IFall 2018 Syllabus SPOT
MATH 3680.003Applied StatisticsFall 2017 Syllabus SPOT
MATH 3680.004Applied StatisticsFall 2017 Syllabus SPOT
MATH 2730.001Multivariable CalculusFall 2017 Syllabus SPOT
MATH 2730.002Multivariable CalculusFall 2017 Syllabus SPOT
MATH 3680.004Applied StatisticsSpring 2017 Syllabus SPOT
MATH 3680.005Applied StatisticsSpring 2017 Syllabus SPOT
MATH 1710.150Calculus ISpring 2017 Syllabus SPOT
MATH 1710.151Calculus ISpring 2017
MATH 1710.152Calculus ISpring 2017
MATH 1710.153Calculus ISpring 2017
MATH 1710.154Calculus ISpring 2017
MATH 1710.160Calculus ISpring 2017 Syllabus SPOT
MATH 1710.161Calculus ISpring 2017
MATH 1710.162Calculus ISpring 2017
MATH 1710.163Calculus ISpring 2017
MATH 3680.003Applied StatisticsFall 2016 Syllabus SPOT
MATH 3680.004Applied StatisticsFall 2016 Syllabus SPOT
MATH 1710.120Calculus IFall 2016 Syllabus SPOT
MATH 1710.121Calculus IFall 2016
MATH 1710.122Calculus IFall 2016
MATH 1710.123Calculus IFall 2016
MATH 1710.124Calculus IFall 2016
MATH 1710.130Calculus IFall 2016 Syllabus SPOT
MATH 1710.131Calculus IFall 2016
MATH 1710.132Calculus IFall 2016
MATH 1710.133Calculus IFall 2016
MATH 1710.134Calculus IFall 2016
MATH 3680.001Applied StatisticsSpring 2016 Syllabus SPOT
MATH 3680.005Applied StatisticsSpring 2016 Syllabus SPOT
MATH 2730.002Multivariable CalculusSpring 2016 Syllabus SPOT
MATH 2730.003Multivariable CalculusSpring 2016 Syllabus SPOT
MATH 3680.001Applied StatisticsFall 2015 Syllabus SPOT
MATH 3680.003Applied StatisticsFall 2015 Syllabus SPOT
MATH 2730.001Multivariable CalculusFall 2015 Syllabus SPOT
MATH 2730.006Multivariable CalculusFall 2015 Syllabus SPOT
MATH 3680.002Applied StatisticsSpring 2015 Syllabus
MATH 3680.003Applied StatisticsSpring 2015 Syllabus
MATH 1710.620Calculus ISpring 2015 Syllabus
MATH 2730.002Multivariable CalculusSpring 2015 Syllabus
MATH 1650.621Pre CalculusFall 2014 Syllabus
MATH 4610.001ProbabilityFall 2014 Syllabus
MATH 3000.001Real Analysis IFall 2014 Syllabus
MATH 1710.050Calculus ISpring 2014 Syllabus
MATH 1710.620Calculus ISpring 2014 Syllabus
MATH 1720.010Calculus IISpring 2014 Syllabus
MATH 2700.005Linear Algebra and Vector GeometrySpring 2014 Syllabus
MATH 4900.727Special ProblemsSpring 2014
MATH 1710.009Calculus IFall 2013 Syllabus
MATH 1720.003Calculus IIFall 2013 Syllabus
MATH 1650.621Pre CalculusFall 2013 Syllabus
MATH 1710.007Calculus ISpring 2013 Syllabus
MATH 1710.200Calculus ISpring 2013 Syllabus
MATH 1710.620Calculus ISpring 2013 Syllabus
MATH 1720.001Calculus IIFall 2012 Syllabus
MATH 1720.005Calculus IIFall 2012 Syllabus
MATH 2700.002Linear Algebra and Vector GeometryFall 2012 Syllabus
MATH 2730.002Multivariable CalculusFall 2012 Syllabus
MATH 1710.621Calculus ISpring 2012 Syllabus
MATH 1720.002Calculus IISpring 2012 Syllabus
MATH 2730.003Multivariable CalculusSpring 2012 Syllabus
MATH 1710.003Calculus IFall 2011 Syllabus
MATH 1710.620Calculus IFall 2011 Syllabus
MATH 2700.002Linear Algebra and Vector GeometryFall 2011 Syllabus
MATH 2700.006Linear Algebra and Vector GeometryFall 2011 Syllabus
MATH 1710.200Calculus ISpring 2011 Syllabus
MATH 2700.001Linear Algebra and Vector GeometrySpring 2011 Syllabus
MATH 2700.003Linear Algebra and Vector GeometrySpring 2011 Syllabus
MATH 2700.006Linear Algebra and Vector GeometrySpring 2011 Syllabus
MATH 1100.002College AlgebraFall 2010
MATH 1100.007College AlgebraFall 2010
MATH 4610.002ProbabilityFall 2010 Syllabus
MATH 5810.002Probability and StatisticsFall 2010
MATH 1710.003Calculus ISpring 2010
MATH 1710.006Calculus ISpring 2010
MATH 1710.210Calculus ISpring 2010
MATH 1720.007Calculus IIFall 2008
MATH 1350.002Mathematics for Elementary Education Majors IFall 2008
MATH 1350.003Mathematics for Elementary Education Majors IFall 2008
MATH 2730.001Multivariable CalculusFall 2008
MATH 1710.001Calculus ISpring 2008
MATH 1720.005Calculus IISpring 2008
MATH 1350.003Mathematics for Elementary Education Majors ISpring 2008
MATH 1350.005Mathematics for Elementary Education Majors ISpring 2008
MATH 1710.005Calculus IFall 2007
MATH 1100.003College AlgebraFall 2007
MATH 1100.013College AlgebraFall 2007
MATH 1350.006Mathematics for Elementary Education Majors IFall 2007
MATH 1350.002Mathematics for Elementary Education Majors ISpring 2007
MATH 1350.004Mathematics for Elementary Education Majors ISpring 2007
MATH 1350.002Mathematics for Elementary Education Majors IFall 2006
MATH 1350.005Mathematics for Elementary Education Majors IFall 2006

Published Intellectual Contributions

    Conference Proceeding

  • H.Kamo, K.Kawamura and I.Takeuchi. (2001). Computational complexity of self-similar sets.
  • H.Kamo, K.Kawamura and I.Takeuchi. (1999). Hausdorff dimension and Computational Complexity.
  • K.Kawamura. (1998). Real Function with Fractal Property (communicated by Prof. A. Tsutsumi).
  • Journal Article

  • Kawamura, K., Dalaklis, N., Mathis , T., Paizanis , M. (2023). The partial derivative of Okamoto's functions with respect to the parametor. Real Analysis Exchange. 48 (1) pp 1-14.
  • Kawamura, K., Allen, A. (2021). Revolving Fractals. Journal of Fractal Geometry. 8 (doi: 10.4171/JFG/107) 289-304. European Mathematical Society.
  • K. Kawamura. (2011). On the set of points where Lebesgue's singular function has the derivative zero.
  • P. Allaart and K. Kawamura. (2011). Takagi function: Survey. Denton,
  • P.Allaart and K.Kawamura. (2010). The improper infinite derivatives of Takagi's nowhere differentiable function.
  • P.Allaart and K.Kawamura. (2007). Dimensions of coordinate functions of space-filling curves.
  • P.Allaart and K. Kawamura. (2006). Extreme values of some nowhere differentiable functions.
  • P.Allaart and K.Kawamura. (2005). On the coordinate functions of Levy 's dragon curve.
  • K. Kawamura. (2002). On the classification of self-similar sets determined by two contractions on the plane.
  • H. Kamo, K. Kawamura and I. Takeuti. (2000). Computational complexity of fractal sets.
  • H.Kamo and K.Kawamura. (1999). Computability of self-similar sets.
  • K. Kawamura. (1997). A few remark s on real function s with fractal properties.
  • H.Kamo and K.Kawamura. (1997). Computability of self-affine sets.
  • H.Kamo and K.Kawamura. (1996). Computability of Koch curve and Koch island.

Contracts, Grants and Sponsored Research

    Grant - Research

  • Allaart, P. (Principal), Lazebnik, K.Y. (Co-Principal), Kawamura, K. (Co-Principal), "Conference: Dynamical Systems and Fractal Geometry," sponsored by National Science Foundation, Federal, $32017 Funded. (2024 - 2025).
  • Kawamura, K. (Principal), "Travel support for Invited Speaker in workshop “60 years of dynamics and number expansions” in Pisa, Italy," sponsored by Leiden University, International, $1600 Funded. (2018 - 2018).
  • Kawamura, K. (Principal), "On nowhere differntiable functions," sponsored by RIMS, Kyoto University, International, $20000 Funded. (2009 - 2009).
  • Kawamura, K. (Principal), "On a classification of self-similar sets," sponsored by Japan association for mathematical sciences, National, $2500 Funded. (1999 - 1999).
  • Kawamura, K. (Principal), "Computational complexity of fractal sets," sponsored by International information science foundation, International, $8000 Funded. (1998 - 1998).
  • Kawamura, K. (Principal), "Travel support for Invited Speaker in workshop �60 years of dynamics and number expansions� in Pisa, Italy," sponsored by Leiden University, International, Funded. (2018 - 2018).
  • Kawamura, K. (Principal), "On nowhere differntiable functions," sponsored by RIMS, Kyoto University, International, Funded. (2009 - 2009).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE