Faculty Profile

Kirill Morozov

Title
Associate Professor
Department
Computer Science and Engineering
College
College of Engineering

    

Education

PhD, University of Aarhus, 2005.
Major: Science
Degree Specialization: Computer Science/Cryptography
Dissertation Title: On Cryptographic Primitives Based on Noisy Channels
MSc, Saint-Petersburg State University of Telecommunications, Russia, 1998.
Major: Radiophysics and Electronics
Dissertation Title: Implementation of the RSA Public-Key Cryptosystem (in Russian)

Current Scheduled Teaching*

CSCE 4050.001, Applications of Cryptography, Spring 2024 Syllabus
CSCE 5050.001, Applicatoins of Cryptography, Spring 2024 Syllabus
CSCE 6940.914, Individual Research, Spring 2024
CSCE 4999.714, Senior Thesis, Spring 2024

* Texas Education Code 51.974 (HB 2504) requires each institution of higher education to make available to the public, a syllabus for undergraduate lecture courses offered for credit by the institution.

Previous Scheduled Teaching*

CSCE 5934.814, Directed Study, Fall 2023
CSCE 5550.001, Introduction to Computer Security, Fall 2023 SPOT
CSCE 5550.600, Introduction to Computer Security, Fall 2023 SPOT
CSCE 5950.814, Master's Thesis, Fall 2023
CSCE 4999.714, Senior Thesis, Fall 2023
CSCE 6950.914, Doctoral Dissertation, Summer 10W 2023
CSCE 4050.001, Applications of Cryptography, Spring 2023 Syllabus SPOT
CSCE 5050.001, Applicatoins of Cryptography, Spring 2023 Syllabus SPOT
CSCE 5050.600, Applicatoins of Cryptography, Spring 2023 SPOT
CSCE 4890.714, Directed Study, Spring 2023
CSCE 6950.914, Doctoral Dissertation, Spring 2023
CSCE 5950.814, Master's Thesis, Spring 2023
CSCE 4999.714, Senior Thesis, Spring 2023
CSCE 6950.814, Doctoral Dissertation, Fall 2022
CSCE 5550.001, Introduction to Computer Security, Fall 2022 Syllabus SPOT
CSCE 5950.814, Master's Thesis, Fall 2022
CSCE 4050.001, Applications of Cryptography, Spring 2022 Syllabus SPOT
CSCE 5050.001, Applicatoins of Cryptography, Spring 2022 Syllabus SPOT
CSCE 5550.001, Introduction to Computer Security, Fall 2021 Syllabus SPOT
CSCE 5550.008, Introduction to Computer Security, Fall 2021 Syllabus SPOT
CSCE 4050.001, Applications of Cryptography, Spring 2021 Syllabus SPOT
CSCE 4050.004, Applications of Cryptography, Spring 2021 Syllabus SPOT
CSCE 5050.001, Applicatoins of Cryptography, Spring 2021 Syllabus SPOT
CSCE 5050.004, Applicatoins of Cryptography, Spring 2021 Syllabus SPOT
CSCE 5050.008, Applicatoins of Cryptography, Spring 2021
CSCE 5050.600, Applicatoins of Cryptography, Spring 2021 Syllabus SPOT
CSCE 6940.714, Individual Research, Spring 2021
CSCE 4999.714, Senior Thesis, Spring 2021
CSCE 3550.001, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.004, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.201, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.202, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.203, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.204, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.206, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.211, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.222, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 3550.282, Introduction to Computer Security, Fall 2020 Syllabus SPOT
CSCE 4999.714, Senior Thesis, Fall 2020
CSCE 4050.001, Applications of Cryptography, Spring 2020 Syllabus
CSCE 5050.001, Applicatoins of Cryptography, Spring 2020 Syllabus
CSCE 6940.714, Individual Research, Spring 2020
CSCE 5950.714, Master's Thesis, Spring 2020
CSCE 6950.814, Doctoral Dissertation, Fall 2019
CSCE 6940.814, Individual Research, Fall 2019
CSCE 5550.001, Introduction to Computer Security, Fall 2019 Syllabus SPOT
CSCE 5550.600, Introduction to Computer Security, Fall 2019 SPOT
CSCE 5950.814, Master's Thesis, Fall 2019
CSCE 4050.001, Applications of Cryptography, Spring 2019 Syllabus SPOT
CSCE 5050.001, Applicatoins of Cryptography, Spring 2019 SPOT
CSCE 5050.600, Applicatoins of Cryptography, Spring 2019
CSCE 5934.814, Directed Study, Spring 2019
CSCE 6950.814, Doctoral Dissertation, Spring 2019
CSCE 5900.814, Special Problems, Spring 2019
CSCE 6950.814, Doctoral Dissertation, Fall 2018
CSCE 6940.814, Individual Research, Fall 2018
CSCE 5550.001, Introduction to Computer Security, Fall 2018 SPOT
CSCE 4930.025, Topics in Computer Science and Engineering, Summer 10W 2018 Syllabus SPOT
CSCE 5933.025, Topics in Computer Science and Engineering, Summer 10W 2018 SPOT
CSCE 4050.001, Applications of Cryptography, Spring 2018 Syllabus SPOT
CSCE 5050.001, Applicatoins of Cryptography, Spring 2018 SPOT
CSCE 5050.600, Applicatoins of Cryptography, Spring 2018 SPOT

* Texas Education Code 51.974 (HB 2504) requires each institution of higher education to make available to the public, a syllabus for undergraduate lecture courses offered for credit by the institution.

Published Publications

Published Intellectual Contributions

Book
Morozov, K., Anada, H., Suga, Y. (2018). Cryptographic Technologies for Securing Network Storage. 80, 116. Fukuoka: Kijima Publishing. https://www.imi.kyushu-u.ac.jp/eng/files/imipublishattachment/file/math_5acd77b7a56ce.pdf
Book Chapter
Morozov, K. (2018). Code-Based Zero-Knowledge Protocols and Their Applications. Mathematical Modelling for Next-Generation Cryptography. 43-62. Springer Singapore. http://dx.doi.org/10.1007/978-981-10-5065-7_3
Morozov, K. (2014). Code-Based Public-Key Encryption. Mathematics for Industry. 47-55. Springer Japan. http://dx.doi.org/10.1007/978-4-431-55060-0_4
Conference Proceeding
Zaccagni, Z., Dantu, R., Morozov, K. (2023). Proof of Review: Trust Me, It's Been Reviewed. 11 pages. New York: ACM. UNT Discovery Park 3940 North Elm Street (Department of Computer Science and Engineering)
Zaccagni, Z., Dantu, R., Morozov, K. (2023). Proof of Review: Trust Me, It's Been Reviewed. 23–34. New York NY: ACM. https://dl.acm.org/doi/10.1145/3625078.3625082
Chiapputo, N., Desmedt, Y., Morozov, K. (2023). Using Untrusted and Unreliable Cloud Providers to Obtain Private Email. 171-182. SECRYPT 2023. https://www.scitepress.org/Link.aspx?doi=10.5220/0012090700003555
Zaccagni, Z., Dantu, R., Morozov, K. (2023). Maintaining Review Credibility Using NLP, Reputation, and Blockchain. 58-66. IEEE. https://ieeexplore.ieee.org/document/10063712
Salau, A., Dantu, R., Morozov, K., Upadhyay, K., Badruddoja, S. (2023). Multi-Tier Reputation for Data Cooperatives. 253-273. Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-031-18679-0_14
Salau, A., Dantu, R., Morozov, K., Badruddoja, S., Upadhyay, K. (2022). Making Blockchain Validators Honest. IEEE. https://doi.org/10.1109/BCCA55292.2022.9921952
Salau, A., Dantu, P., Morozov, K., Upadhyay, K., Badruddoja, S. (2022). Towards a Threat Model and Security Analysis for Data Cooperatives. 707-713. SECRYPT 2022.
Salau, A., Dantu, R., Morozov, K., Badruddoja, S., Upadhyay, K. (2022). Towards a Threat Model and Security Analysis for Data Cooperatives. 707-713. Lisbon,: Proceedings of the 19th International Conference on Security and Cryptography,(SECRYPT)}.
Dockendorf, M., Dantu, P., Morozov, K., Bhowmick, S. (2021). Investing Data with Untrusted Parties using HE. 845-853. Richardson: SECRYPT 2021.
Talkington, J., Dantu, R., Morozov, K. (2020). Detecting Devices and Protocols on VPN-Encrypted Networks. Other. 8. IEEE.
Talkington, J., Morozov, K., Dantu, R. (2020). Why Protocols Fail to Transition to Mobile Domains. Other. 12. IEEE. https://ieeexplore.ieee.org/document/9042951
Sen, N., Dantu, R., Morozov, K. (2020). EW256357 : A New Secure NIST P-256 Compatible Elliptic Curve for VoIP Applications’ Security. 291-310. Springer. https://link.springer.com/chapter/10.1007%2F978-3-030-63095-9_19
Bucuti, T. H., Dantu, R., Morozov, K. (2019). CMCAP: Ephemeral Sandboxes for Adaptive Access Control. Proceedings of the 24th ACM Symposium on Access Control Models and Technologies - SACMAT '19. ACM Press. http://dx.doi.org/10.1145/3322431.3325414
Desmedt, Y., Dutta, S., Morozov, K. (2019). Evolving Perfect Hash Families: A Combinatorial Viewpoint of Evolving Secret Sharing. Cryptology and Network Security. 291-307. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-31578-8_16
Aguirre Farro, F., Morozov, K. (2019). On IND-CCA1 Security of Randomized McEliece Encryption in the Standard Model. Code-Based Cryptography. 137-148. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-25922-8_8
Roy, P., Morozov, K., Fukushima, K., Kiyomoto, S., Takagi, T. (2019). Security Analysis and Efficient Implementation of Code-based Signature Schemes. Proceedings of the 5th International Conference on Information Systems Security and Privacy. SCITEPRESS - Science and Technology Publications. http://dx.doi.org/10.5220/0007259102130220
Desmedt, Y., Morozov, K. (2019). VSS Made Simpler. Advances in Information and Computer Security. 329-342. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-26834-3_19
Talkington, J., Dantu, R., Morozov, K. (2019). Verifying OAuth Implementations Through Encrypted Network Analysis. Proceedings of the 24th ACM Symposium on Access Control Models and Technologies - SACMAT '19. ACM Press. http://dx.doi.org/10.1145/3322431.3326449
Roy, P. S., Dutta, S., Morozov, K., Adhikari, A., Fukushima, K., Kiyomoto, S., Sakurai, K. (2018). Hierarchical Secret Sharing Schemes Secure Against Rushing Adversary: Cheater Identification and Robustness. Information Security Practice and Experience - 14th International Conference, ISPEC 2018, Tokyo, Japan, September 25-27, 2018, Proceedings. 578--594. https://doi.org/10.1007/978-3-319-99807-7\_37
Ranganthan, V. P., Dantu, R., Paul, A., Mears, P., Morozov, K. (2018). A Decentralized Marketplace Application on the Ethereum Blockchain. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). IEEE. http://dx.doi.org/10.1109/cic.2018.00023
Yoshida, Y., Morozov, K., Tanaka, K. (2017). CCA2 Key-Privacy for Code-Based Encryption in the Standard Model. Post-Quantum Cryptography. 35-50. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-59879-6_3
Morozov, K., Roy, P. S., Sakurai, K. (2017). On unconditionally binding code-based commitment schemes. Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication - IMCOM '17. ACM Press. http://dx.doi.org/10.1145/3022227.3022327
Xu, R., Morozov, K., Basu, A., Rahman, M. S., Kiyomoto, S. (2017). Security Analysis of a Verifiable Server-Aided Approximate Similarity Computation. Advances in Information and Computer Security. 159-178. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-64200-0_10
Ke, C., Anada, H., Kawamoto, J., Morozov, K., Sakurai, K. (2016). Cross-group Secret Sharing for Secure Cloud Storage Service. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication - IMCOM '16. ACM Press. http://dx.doi.org/10.1145/2857546.2857610
Adhikari, A., Morozov, K., Obana, S., Roy, P. S., Sakurai, K., Xu, R. (2016). Efficient Threshold Secret Sharing Schemes Secure Against Rushing Cheaters. Lecture Notes in Computer Science. 3-23. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-49175-2_1
Xu, R., Morozov, K., Yang, Y., Zhou, J., Takagi, T. (2016). Privacy-Preserving k-Nearest Neighbour Query on Outsourced Database. Information Security and Privacy. 181-197. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-40253-6_11
Desmedt, Y., Morozov, K. (2015). Parity Check based redistribution of secret shares. 2015 IEEE International Symposium on Information Theory (ISIT). IEEE. http://dx.doi.org/10.1109/isit.2015.7282597
Roy, P. S., Adhikari, A., Xu, R., Morozov, K., Sakurai, K. (2014). An Efficient Robust Secret Sharing Scheme with Optimal Cheater Resiliency. Security, Privacy, and Applied Cryptography Engineering. 47-58. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-12060-7_4
Xu, R., Morozov, K., Takagi, T. (2014). Cheater Identifiable Secret Sharing Schemes via Multi-Receiver Authentication. Advances in Information and Computer Security. 72-87. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-09843-2_6
Xu, R., Morozov, K., Takagi, T. (2013). On Cheater Identifiable Secret Sharing Schemes Secure against Rushing Adversary. Advances in Information and Computer Security. 258-271. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-41383-4_17
Hu, R., Morozov, K., Takagi, T. (2013). Proof of plaintext knowledge for code-based public-key encryption revisited. Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communications security - ASIA CCS '13. ACM Press. http://dx.doi.org/10.1145/2484313.2484385
Hu, R., Morozov, K., Takagi, T. (2013). On Zero-Knowledge Identification Based on Q-ary Syndrome Decoding. 2013 Eighth Asia Joint Conference on Information Security. IEEE. http://dx.doi.org/10.1109/asiajcis.2013.10
Morozov, K., Takagi, T. (2012). Zero-Knowledge Protocols for the McEliece Encryption. Information Security and Privacy. 180-193. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-31448-3_14
Nishi, R., Morozov, K., Hori, Y., Sakurai, K. (2011). Improvement on Secrecy Capacity of Wireless LAN Using Matched Filter. 2011 Seventh International Conference on Mobile Ad-hoc and Sensor Networks. IEEE. http://dx.doi.org/10.1109/msn.2011.40
Morozov, K., Savvides, G. (2011). Efficient computational oblivious transfer using interactive hashing. Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security - ASIACCS '11. ACM Press. http://dx.doi.org/10.1145/1966913.1966977
Cui, Y., Morozov, K., Kobara, K., Imai, H. (2009). Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. 159-168. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-02181-7_17
Imai, H., Morozov, K., Nascimento, A. C. (2009). Efficient Oblivious Transfer Protocols Achieving a Non-zero Rate from Any Non-trivial Noisy Correlation. Lecture Notes in Computer Science. 183-194. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-10230-1_16
Kobara, K., Morozov, K., Overbeck, R. (2008). Coding-Based Oblivious Transfer. Mathematical Methods in Computer Science. 142-156. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-540-89994-5_12
Oggier, F., Morozov, K. (2008). A practical scheme for string commitment based on the Gaussian channel. 2008 IEEE Information Theory Workshop. IEEE. http://dx.doi.org/10.1109/itw.2008.4578679
Imai, H., Morozov, K., A. Nascimento, A., Winter, A. (2006). Efficient Protocols Achieving the Commitment Capacity of Noisy Correlations. 2006 IEEE International Symposium on Information Theory. IEEE. http://dx.doi.org/10.1109/isit.2006.262083
Imai, H., Morozov, K., A. Nascimento, A. (2006). On the Oblivious Transfer Capacity of the Erasure Channel. 2006 IEEE International Symposium on Information Theory. IEEE. http://dx.doi.org/10.1109/isit.2006.262082
Crépeau, C., Morozov, K., Wolf, S. (2005). Efficient Unconditional Oblivious Transfer from Almost Any Noisy Channel. Security in Communication Networks. 47-59. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-540-30598-9_4
Damgård, I., Fehr, S., Morozov, K., Salvail, L. (2004). Unfair Noisy Channels and Oblivious Transfer. Theory of Cryptography. 355-373. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-540-24638-1_20
Korjik, V., Morozov, K. (2001). Generalized Oblivious Transfer Protocols Based on Noisy Channels. Information Assurance in Computer Networks. 219-229. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/3-540-45116-1_22
Journal Article
Xu, R., Wang, X., Morozov, K., Cheng, C., Ding, J. (2022). Revisiting group oriented secret sharing schemes. Information Sciences. 589, 751-769. Amsterdam: Elsevier. https://www.sciencedirect.com/science/article/abs/pii/S0020025521012743
Xu, R., Wang, X., Morozov, K. (2021). Group authentication for cloud-to-things computing: Review and improvement. 198(108374), 8. Amsterdam: Elsevier. https://www.sciencedirect.com/science/article/abs/pii/S138912862100356X
Morozov, K., Roy, P. S., Steinwandt, R., Xu, R. (2018). On the security of the Courtois-Finiasz-Sendrier signature. Other. 16, 161-167.
Anada, H., Kawamoto, J., Ke, C., Morozov, K., Sakurai, K. (2017). Cross-group secret sharing scheme for secure usage of cloud storage over different providers and regions. Journal of Supercomputing. 73(10), 4275-4301.
Xu, R., Morozov, K., Takagi, T. (2017). Secret Sharing with Cheaters Using Multi-Receiver Authentication. Other. E100A(1), 115-125.
Xu, R., Morozov, K., Yang, Y., Zhou, J., Takagi, T. (2017). Efficient outsourcing of secure k -nearest neighbour query over encrypted database. Computers & Security. 69, 65-83. Elsevier BV. http://dx.doi.org/10.1016/j.cose.2016.11.012
Zhang, M., Xia, Y., Yuan, O., Morozov, K. (2016). Privacy-friendly weighted-reputation aggregation protocols against malicious adversaries in cloud services. Other. 29(12), 1863-1872.
Xu, R., Morozov, K., Takagi, T. (2015). Note on Some Recent Cheater Identifiable Secret Sharing Schemes. Other. E98A(8), 1814-1819.
Hu, R., Morozov, K., Takagi, T. (2015). Zero-Knowledge Protocols for Code-Based Public-Key Encryption. Other. E98A(10), 2139-2151.
Zhang, M., Morozov, K., Takagi, T. (2014). Generic Constructions and Transformations of Decryption Consistent Encryption. Other. 60(3), 218-228.
Zhang, M., Wang, C., Morozov, K. (2014). LR-FEAD: leakage-tolerating and attribute-hiding functional encryption mechanism with delegation in affine subspaces. Journal of Supercomputing. 70(3), 1405-1432.
Zhang, M., Morozov, K., Takagi, T. (2014). Revisits and Transformations Among Functional Encryption Systems. Other. 31(1), 103-114.
Pinto, Adriana C. B.,, Dowsley, R., Morozov, K., Nascimento, Anderson C. A., (2011). Achieving Oblivious Transfer Capacity of Generalized Erasure Channels in the Malicious Model. IEEE Transactions on Information Theory. 57(8), 5566-5571.
Nojima, R., Imai, H., Kobara, K., Morozov, K. (2008). Semantic security for the McEliece cryptosystem without random oracles. Other. 49(1-3), 289-305.
Technical Report
Damgård, I. B., Fehr, S., Morozov, K., Salvail, L. (2003). Unfair Noisy Channels and Oblivious Transfer. Other. 10(36), . Aarhus University Library. http://www.brics.dk/RS/03/36/

Awarded Grants

Contracts, Grants and Sponsored Research

Grant - Research
Do, H. (Principal), Morozov, K. (Co-Principal), Bryce, R. C. (Other), Hochstetler, J. (Other), "GenCyber Teachers Camp: GenCyber Academy," Sponsored by National Security Agency (NSA), Federal, $149900 Funded. (September 2023August 2025).
Dantu, R. (Principal), Morozov, K. (Co-Principal), Dantu, S. (Co-Principal), "PrivacyPreserving Analytics on a Data Cooperative for Comprehensive Threat Prevention," Sponsored by National Security Agency, Federal, $750000 Funded. (September 9, 2021December 31, 2024).
Fu, S. (Principal), Morozov, K. (Co-Principal), "North Texas GenCyber Academy," Sponsored by National Security Agency and National Science Foundation, Federal, $139042 Funded. (June 2022June 2024).
Dantu, R. (Principal), Morozov, K., Bhowmick, S. (Co-Principal), "Locating Super-Spreaders Through Partnership of Anonymization and Encryption," Sponsored by NSA, Federal, $299944 Funded. (2020September 2023).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE