Skip to main content

Lior Fishman

Title: Associate Professor

Department: Mathematics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, Ben-Gurion University of The Negev, 2009
    Major: Mathematics
    Specialization: Schmidt's game and fractals
  • MS, Bar Ilan University, 1995
    Major: Very small sets
  • BS, Bar Ilan University, 1993
    Major: Mathematics

Current Scheduled Teaching

MATH 6950.730Doctoral DissertationSpring 2025
MATH 4500.001Introduction to TopologySpring 2025
MATH 5600.001Introduction to TopologySpring 2025
MATH 3400.001Number TheorySpring 2025
MATH 5900.724Special ProblemsSpring 2025
MATH 6910.001Special ProblemsSpring 2025
MATH 3410.005Differential Equations IFall 2024 Syllabus
MATH 6950.713Doctoral DissertationFall 2024
MATH 1780.002Probability ModelsFall 2024 Syllabus
MATH 6900.001Special ProblemsFall 2024

Previous Scheduled Teaching

MATH 3410.004Differential Equations ISpring 2024 Syllabus SPOT
MATH 6950.725Doctoral DissertationSpring 2024
MATH 4060.001Foundations of GeometrySpring 2024 Syllabus SPOT
MATH 3996.001Honors College Mentored Research ExperienceSpring 2024
MATH 4900.703Special ProblemsSpring 2024
MATH 6900.710Special ProblemsSpring 2024
MATH 6950.707Doctoral DissertationFall 2023
MATH 3000.001Real Analysis IFall 2023 Syllabus SPOT
MATH 5900.709Special ProblemsFall 2023
MATH 6950.720Doctoral DissertationSpring 2023
MATH 3400.001Number TheorySpring 2023 Syllabus SPOT
MATH 3000.002Real Analysis ISpring 2023 Syllabus SPOT
MATH 4900.702Special ProblemsSpring 2023
MATH 4900.705Special ProblemsSpring 2023
MATH 5900.715Special ProblemsSpring 2023
MATH 6950.703Doctoral DissertationFall 2022
MATH 4900.702Special ProblemsFall 2022
MATH 6610.001Topics in Topology and GeometryFall 2022 SPOT
MATH 6950.725Doctoral DissertationSpring 2022
MATH 4060.001Foundations of GeometrySpring 2022 Syllabus SPOT
MATH 4951.001Honors College Capstone ThesisSpring 2022
MATH 3000.002Real Analysis ISpring 2022 Syllabus SPOT
MATH 4900.704Special ProblemsSpring 2022
MATH 5900.707Special ProblemsSpring 2022
MATH 5900.717Special ProblemsSpring 2022
MATH 5910.703Special ProblemsSpring 2022
MATH 6950.709Doctoral DissertationFall 2021
MATH 3996.702Honors College Mentored Research ExperienceFall 2021
MATH 3000.001Real Analysis IFall 2021 Syllabus SPOT
MATH 5900.710Special ProblemsFall 2021
MATH 5910.702Special ProblemsFall 2021
MATH 6110.001Topics in AnalysisFall 2021 SPOT
MATH 6950.708Doctoral DissertationSpring 2021
MATH 3400.001Number TheorySpring 2021 Syllabus SPOT
MATH 3000.002Real Analysis ISpring 2021 Syllabus SPOT
MATH 5910.703Special ProblemsSpring 2021
MATH 6950.724Doctoral DissertationFall 2020
MATH 4520.001Introduction to Functions of a Complex VariableFall 2020 Syllabus SPOT
MATH 5400.001Introduction to Functions of a Complex VariableFall 2020 SPOT
MATH 3000.001Real Analysis IFall 2020 Syllabus SPOT
MATH 5900.710Special ProblemsFall 2020
MATH 2000.002Discrete MathematicsSpring 2020 Syllabus
MATH 6950.708Doctoral DissertationSpring 2020
MATH 4951.001Honors College Capstone ThesisSpring 2020
MATH 4500.001Introduction to TopologySpring 2020 Syllabus
MATH 5600.001Introduction to TopologySpring 2020
MATH 6220.001Logic and Dynamics SeminarSpring 2020
MATH 4900.704Special ProblemsSpring 2020
MATH 5900.705Special ProblemsSpring 2020
MATH 6950.724Doctoral DissertationFall 2019
MATH 4520.001Introduction to Functions of a Complex VariableFall 2019 Syllabus SPOT
MATH 5400.001Introduction to Functions of a Complex VariableFall 2019 SPOT
MATH 3000.001Real Analysis IFall 2019 Syllabus SPOT
MATH 4900.702Special ProblemsFall 2019
MATH 5900.710Special ProblemsFall 2019
MATH 1720.200Calculus IISpring 2019 Syllabus SPOT
MATH 1720.202Calculus IISpring 2019
MATH 2000.002Discrete MathematicsSpring 2019 Syllabus SPOT
MATH 6950.711Doctoral DissertationSpring 2019
MATH 6950.726Doctoral DissertationSpring 2019
MATH 4900.703Special ProblemsSpring 2019
MATH 6900.705Special ProblemsSpring 2019
MATH 1710.200Calculus IFall 2018 Syllabus SPOT
MATH 1710.201Calculus IFall 2018
MATH 6950.724Doctoral DissertationFall 2018
MATH 6950.725Doctoral DissertationFall 2018
MATH 2700.009Linear Algebra and Vector GeometryFall 2018 Syllabus SPOT
MATH 5900.710Special ProblemsFall 2018
MATH 6900.710Special ProblemsFall 2018
MATH 6950.711Doctoral DissertationSpring 2018
MATH 6950.726Doctoral DissertationSpring 2018
MATH 4500.001Introduction to TopologySpring 2018 Syllabus SPOT
MATH 5600.001Introduction to TopologySpring 2018 SPOT
MATH 2700.003Linear Algebra and Vector GeometrySpring 2018 Syllabus SPOT
MATH 5900.705Special ProblemsSpring 2018
MATH 6950.724Doctoral DissertationFall 2017
MATH 6950.725Doctoral DissertationFall 2017
MATH 6220.001Logic and Dynamics SeminarFall 2017
MATH 3000.001Real Analysis IFall 2017 Syllabus SPOT
MATH 5900.710Special ProblemsFall 2017
MATH 6900.710Special ProblemsFall 2017
MATH 6110.001Topics in AnalysisFall 2017 SPOT
MATH 5420.001COMPLEX VARIABLESpring 2017 SPOT
MATH 3400.001Number TheorySpring 2017 Syllabus SPOT
MATH 5900.711Special ProblemsSpring 2017
MATH 6900.703Special ProblemsSpring 2017
MATH 6900.711Special ProblemsSpring 2017
MATH 6900.719Special ProblemsSpring 2017
MATH 5410.002Functions of a Complex VariableFall 2016 SPOT
MATH 6220.001Logic and Dynamics SeminarFall 2016
MATH 4900.702Special ProblemsFall 2016
MATH 5900.710Special ProblemsFall 2016
MATH 6900.710Special ProblemsFall 2016
MATH 6110.001Topics in AnalysisFall 2016 SPOT
MATH 4900.702Special ProblemsSummer 10W 2016
MATH 3510.001Abstract Algebra ISpring 2016 Syllabus SPOT
MATH 5900.711Special ProblemsSpring 2016
MATH 5620.001TopologySpring 2016 SPOT
MATH 5610.001Topology.Fall 2015 SPOT
MATH 6950.705Doctoral DissertationSummer 5W1 2015
MATH 5900.703Special ProblemsSummer 5W1 2015
MATH 6950.711Doctoral DissertationSpring 2015
MATH 4500.001Introduction to TopologySpring 2015 Syllabus
MATH 5600.001Introduction to TopologySpring 2015
MATH 6220.001Logic and Dynamics SeminarSpring 2015
MATH 5900.711Special ProblemsSpring 2015
MATH 6900.711Special ProblemsSpring 2015
MATH 5620.001TopologySpring 2015
MATH 6950.713Doctoral DissertationFall 2014
MATH 2700.004Linear Algebra and Vector GeometryFall 2014 Syllabus
MATH 6220.001Logic and Dynamics SeminarFall 2014
MATH 4900.703Special ProblemsFall 2014
MATH 5900.751Special ProblemsFall 2014
MATH 5610.001Topology.Fall 2014
MATH 4900.701Special ProblemsSummer 10W 2014
MATH 6950.711Doctoral DissertationSpring 2014
MATH 4500.001Introduction to TopologySpring 2014 Syllabus
MATH 5600.001Introduction to TopologySpring 2014
MATH 4900.711Special ProblemsSpring 2014
MATH 6900.711Special ProblemsSpring 2014
MATH 6950.713Doctoral DissertationFall 2013
MATH 2730.004Multivariable CalculusFall 2013 Syllabus
MATH 3000.002Real Analysis IFall 2013 Syllabus
MATH 4900.703Special ProblemsFall 2013
MATH 4910.705Special ProblemsFall 2013
MATH 5900.751Special ProblemsFall 2013
MATH 6900.727Special ProblemsFall 2013
MATH 1720.006Calculus IISpring 2013 Syllabus
MATH 3510.001Introduction to Abstract AlgebraSpring 2013 Syllabus
MATH 6220.001Logic and Dynamics SeminarSpring 2013
MATH 1720.210Calculus IIFall 2012 Syllabus
MATH 3510.001Introduction to Abstract AlgebraFall 2012 Syllabus
MATH 6220.001Logic and Dynamics SeminarFall 2012
MATH 4900.706Special ProblemsSummer 10W 2012
MATH 1710.620Calculus ISpring 2012 Syllabus
MATH 1650.621Pre CalculusFall 2011 Syllabus

Published Intellectual Contributions

    Journal Article

  • Fishman, L., Urbanski, M., Das, T., Simmons, D. (2024). A variational principle in the parametric geometry of numbers. Advances in Mathematics. 437
  • Fishman, L., Das, T., Urbanski, M., Simmons, D. (2023). Hausdorff dimensions of perturbations of a conformal iterated function system via thermodynamic formalism. Selecta Mathematica. 29 (19) 56.
  • Fishman, L., Jackson, S.C., Crone, L. (2022). Equivalence Relations and Determinacy. Journal of Mathematical Logic. 22 (1) 19.
  • Fishman, L., Crone, L., Jackson, S.C. (2022). DETERMINACY OF SCHMIDT’S GAME AND OTHER INTERSECTION GAMES. The Journal of Symbolic Logic.
  • Fishman, L., Jackson, S.C., Crone, L. (2022). Hausdorff Dimension Regularity Properties and Games. Israel Journal of Mathematics. 248 (481–500)
  • Fishman, L., Kleinbock, D., Merrill, K., Simmons, D. (2021). Intrinsic Diophantine approximation on quadric hypersurfaces. Journal of the European Mathematical Society. 24 (3) 1045–1101.
  • Urbanski, M., Das, T., Fishman, L., Simmons, D. (2021). Extremality and Dynamically Defined Measures, Part II. Ergodic Theory and Dynamical Systems. 41 2311-2348.
  • Fishman, L., Crone, L., Hiers, N., Jackson, S.C. (2019). EQUIVALENCE OF THE ROTHBERGER AND 2-ROTHBERGER GAMES FOR HAUSDORFF SPACES. Topology and its Applications. 258 172-176.
  • Fishman, L., Broderick, R., Simmons, D. (2019). QUANTITATIVE RESULTS USING VARIANTS OF SCHMIDT’S GAME: DIMENSION BOUNDS, ARITHMETIC PROGRESSIONS, AND MORE. Acta Arithmetica. 188 289-316.
  • Urbanski, M., Das, T., Fishman, L., Simmons, D. (2019). Badly approximable points on self-affine sponges and the lower Assouad dimension. Ergodic Theory and Dynamical Systems. (39) 638-657.
  • Fishman, L., Merrill, K., Simmons, D. (2018). Hausdorff dimensions of very well intrinsically approximable subsets of quadratic hypersurfaces. Selecta Mathematica, New Series. 24 (5) 3875-3888.
  • Fishman, L., Merrill, K., Simmons, D. (2018). Intrinsic Diophantine approximation on manifolds: general theory. Transactions of the American Mathematical Society. 370 (1) 577-599.
  • Fishman, L., Merrill, K., Simmons, D. (2018). Uniformly de Bruijn sequences and symbolic Diophantine approximation on fractals. Annals of Combinatorics. 22 (2) 271-293.
  • Urbanski, M., Das, T., Fishman, L., Simmons, D. (2018). Badly approximable vectors and fractals defined by conformal dynamical systems. Mathematical Research Letters. 25 437--467.
  • Urbanski, M., Das, T., Fishman, L., Simmons, D. (2018). Extremality and Dynamically Defined Measures, Part I. Selecta Mathematica. 24 2165-2206.
  • Fishman, L., Urbanski, M., Das, T., Simmons, D. (2017). A variational principle in the parametric geometry of numbers, with applications to metric Diophantine approximation. Comptes Rendus Mathématique. 355 (8) 835-846.
  • Fishman, L., Broderick, R., Simmons, D. (2017). Decaying and non-decaying badly approximable numbers. Acta Arithmetica. 3513 143-152.
  • Fishman, L., Simmons, D. (2017). Unconventional height functions in simultaneous Diophantine approximation. Monatshefte für Mathematik. 182 (3) 587-618.
  • Fishman, L., Reams, V., Simmons, D. (2016). The Banach Mazur Schmidt game and the Banach Mazur McMullen game. Journal of Number Theory. 167 169-179.
  • Fishman, L., Simmons, D. (2016). Variations on Dirichlet's theorem. Journal of Number Theory. 162 11-22.
  • Monograph

  • Urbanski, M., Fishman, L., Simmons, D. (2018). Diophantine Approximation and the Geometry of Limit Sets in Gromov Hyperbolic Metric Spaces. Memoirs of the American Mathematical Society. 254 (Issue: 1215) 1-137. Memoirs of American Mathematical Society.

Contracts, Grants and Sponsored Research

    Grant - Research

  • Fishman, L. (Principal), "Diophantine Approximation," sponsored by Simons Foundation, Private, $35000 Funded. (2012 - 2017).
  • Fishman, L. (Principal), "Diophantine Approximation," sponsored by Simons Foundation, Private, Funded. (2012 - 2017).
  • Fishman, L. (Principal), Gao, S. (Principal), "Diophantine Approximation on Fractals," sponsored by Simons Foundation, FOND, Funded. (2012 - 2017).
  • Grant - Teaching

  • Fishman, L., "The Incubator project," sponsored by UNT, University of North Texas, $20000 Funded. (2020 - 2020).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE