Skip to main content

Pieter Allaart

Title: Professor

Department: Mathematics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, Vrije Universiteit Amsterdam, 1998
    Major: Mathematics & Computer Science
    Dissertation: Ranges of vector measures and optimal-partitioning inequalities
  • MA, Free University, 1994
    Major: Mathematics; Master's thesis: A constant-sum characterization of Benford's Law

Current Scheduled Teaching

MATH 5900.732Special ProblemsSpring 2025

Previous Scheduled Teaching

MATH 3180.001Probability for EngineersFall 2024 Syllabus SPOT
MATH 6810.001Probability.Fall 2024 SPOT
MATH 4900.702Special ProblemsFall 2024
MATH 5900.714Special ProblemsFall 2024
MATH 5120.001Introduction to AnalysisSpring 2024 SPOT
MATH 3180.001Probability for EngineersSpring 2024 Syllabus SPOT
MATH 5900.723Special ProblemsSpring 2024
MATH 5110.001Introduction to AnalysisFall 2023 SPOT
MATH 4610.001ProbabilityFall 2023 Syllabus SPOT
MATH 5900.719Special ProblemsFall 2023
MATH 6950.712Doctoral DissertationSpring 2023
MATH 5320.001Real AnalysisSpring 2023 SPOT
MATH 3680.004Applied StatisticsFall 2022 Syllabus SPOT
MATH 3680.201Applied StatisticsFall 2022 Syllabus SPOT
MATH 6950.708Doctoral DissertationFall 2022
MATH 4610.001ProbabilityFall 2022 Syllabus SPOT
MATH 5310.001Real AnalysisFall 2022 SPOT
MATH 5310.601Real AnalysisFall 2022 SPOT
MATH 5900.716Special ProblemsFall 2022
MATH 3510.001Abstract Algebra ISpring 2022 Syllabus SPOT
MATH 6950.723Doctoral DissertationSpring 2022
MATH 6810.001Probability.Spring 2022 SPOT
MATH 3510.001Abstract Algebra IFall 2021 Syllabus SPOT
MATH 6950.707Doctoral DissertationFall 2021
MATH 1780.003Probability ModelsFall 2021 Syllabus SPOT
MATH 3010.001Seminar in Problem Solving TechniquesFall 2021
MATH 6950.702Doctoral DissertationSummer 5W1 2021
MATH 6950.702Doctoral DissertationSpring 2021
MATH 4610.001ProbabilitySpring 2021 Syllabus SPOT
MATH 5320.001Real AnalysisSpring 2021 SPOT
MATH 5320.601Real AnalysisSpring 2021 SPOT
MATH 5900.704Special ProblemsSpring 2021
MATH 6900.704Special ProblemsSpring 2021
MATH 6950.702Doctoral DissertationFall 2020
MATH 4610.001ProbabilityFall 2020 Syllabus SPOT
MATH 5810.001Probability and StatisticsFall 2020 SPOT
MATH 3010.001Seminar in Problem Solving TechniquesFall 2020
MATH 3510.001Abstract Algebra ISpring 2020 Syllabus
MATH 6950.702Doctoral DissertationSpring 2020
MATH 5320.001Real AnalysisSpring 2020
MATH 6900.702Special ProblemsSpring 2020
MATH 6950.702Doctoral DissertationFall 2019
MATH 4610.001ProbabilityFall 2019 Syllabus SPOT
MATH 5310.001Real AnalysisFall 2019 SPOT
MATH 3010.001Seminar in Problem Solving TechniquesFall 2019
MATH 6950.702Doctoral DissertationSpring 2019
MATH 2700.001Linear Algebra and Vector GeometrySpring 2019 Syllabus SPOT
MATH 2700.002Linear Algebra and Vector GeometrySpring 2019 Syllabus SPOT
MATH 6810.001Probability.Spring 2019 SPOT
MATH 6950.702Doctoral DissertationFall 2018
MATH 6950.705Doctoral DissertationFall 2018
MATH 3000.001Real Analysis IFall 2018 Syllabus SPOT
MATH 3010.001Seminar in Problem Solving TechniquesFall 2018
MATH 5900.702Special ProblemsFall 2018
MATH 5900.726Special ProblemsFall 2018
MATH 6950.702Doctoral DissertationSpring 2018
MATH 3410.001Differential Equations IFall 2017 Syllabus SPOT
MATH 6950.702Doctoral DissertationFall 2017
MATH 6950.705Doctoral DissertationFall 2017
MATH 4610.001ProbabilityFall 2017 Syllabus SPOT
MATH 3010.001Seminar in Problem Solving TechniquesFall 2017
MATH 3410.001Differential Equations ISpring 2017 Syllabus SPOT
MATH 6950.702Doctoral DissertationSpring 2017
MATH 3000.001Real Analysis ISpring 2017 Syllabus SPOT
MATH 6900.702Special ProblemsSpring 2017
MATH 3410.007Differential Equations IFall 2016 Syllabus SPOT
MATH 6950.702Doctoral DissertationFall 2016
MATH 3000.001Real Analysis IFall 2016 Syllabus SPOT
MATH 3010.001Seminar in Problem Solving TechniquesFall 2016
MATH 6900.703Special ProblemsFall 2016
MATH 6950.702Doctoral DissertationSpring 2016
MATH 4610.001ProbabilitySpring 2016 Syllabus SPOT
MATH 6810.001Probability.Spring 2016 SPOT
MATH 6900.702Special ProblemsSpring 2016
MATH 6950.718Doctoral DissertationFall 2015
MATH 6950.721Doctoral DissertationFall 2015
MATH 5810.001Probability and StatisticsFall 2015 SPOT
MATH 3000.001Real Analysis IFall 2015 Syllabus SPOT
MATH 3010.001Seminar in Problem Solving TechniquesFall 2015
MATH 5900.702Special ProblemsFall 2015
MATH 6950.704Doctoral DissertationSummer 5W1 2015
MATH 3410.003Differential Equations ISpring 2015 Syllabus
MATH 3410.500Differential Equations ISpring 2015 Syllabus
MATH 6950.702Doctoral DissertationSpring 2015
MATH 5320.001Functions of a Real VariableSpring 2015
MATH 5900.702Special ProblemsSpring 2015
MATH 6900.702Special ProblemsSpring 2015
MATH 6950.721Doctoral DissertationFall 2014
MATH 5310.001Functions of a Real VariableFall 2014
MATH 2730.003Multivariable CalculusFall 2014 Syllabus
MATH 2730.500Multivariable CalculusFall 2014 Syllabus
MATH 3010.001Seminar in Problem Solving TechniquesFall 2014
MATH 5900.715Special ProblemsFall 2014
MATH 6900.770Special ProblemsFall 2014
MATH 5900.701Special ProblemsSummer 10W 2014
MATH 3410.003Differential Equations ISpring 2014 Syllabus
MATH 3410.500Differential Equations ISpring 2014 Syllabus
MATH 6950.702Doctoral DissertationSpring 2014
MATH 2700.003Linear Algebra and Vector GeometrySpring 2014 Syllabus
MATH 5900.702Special ProblemsSpring 2014
MATH 6950.721Doctoral DissertationFall 2013
MATH 2730.003Multivariable CalculusFall 2013 Syllabus
MATH 2730.500Multivariable CalculusFall 2013
MATH 5810.001Probability and StatisticsFall 2013
MATH 5900.715Special ProblemsFall 2013
MATH 6900.770Special ProblemsFall 2013
MATH 6950.716Doctoral DissertationSpring 2013
MATH 2700.005Linear Algebra and Vector GeometrySpring 2013 Syllabus
MATH 6810.001Probability.Spring 2013
MATH 5900.707Special ProblemsSpring 2013
MATH 6950.721Doctoral DissertationFall 2012
MATH 2700.003Linear Algebra and Vector GeometryFall 2012 Syllabus
MATH 6810.001Probability.Fall 2012
MATH 5900.715Special ProblemsFall 2012
MATH 5320.001Functions of a Real VariableSpring 2012
MATH 2730.001Multivariable CalculusSpring 2012
MATH 5900.707Special ProblemsSpring 2012
MATH 5310.001Functions of a Real VariableFall 2011
MATH 4610.001ProbabilityFall 2011 Syllabus
MATH 5900.715Special ProblemsFall 2011
MATH 4900.707Special ProblemsSummer 10W 2011
MATH 3680.002Applied StatisticsSpring 2011 Syllabus
MATH 2700.002Linear Algebra and Vector GeometrySpring 2011 Syllabus
MATH 5900.707Special ProblemsSpring 2011
MATH 5900.708Special ProblemsSpring 2011
MATH 3680.002Applied StatisticsFall 2010 Syllabus
MATH 2730.001Multivariable CalculusFall 2010 Syllabus
MATH 5900.715Special ProblemsFall 2010
MATH 5900.765Special ProblemsFall 2010
MATH 5320.001Functions of a Real VariableSpring 2010
MATH 2730.001Multivariable CalculusSpring 2010
MATH 5900.723Special ProblemsSpring 2010
MATH 4610.001ProbabilityFall 2008
MATH 5810.001Probability and StatisticsFall 2008
MATH 2510.001Real Analysis IFall 2008
MATH 6900.770Special ProblemsFall 2008
MATH 4900.001Special ProblemsSummer 3W1 2008
MATH 4900.705Special ProblemsSummer 5W2 2008
MATH 5900.001Special ProblemsSummer 10W 2008
MATH 2510.002Real Analysis ISpring 2008
MATH 5900.723Special ProblemsSpring 2008
MATH 5910.775Special ProblemsSpring 2008
MATH 6900.751Special ProblemsSpring 2008
MATH 1680.007Elementary Probability and StatisticsFall 2007
MATH 5350.002Markov ProcessesFall 2007
MATH 4900.705Special ProblemsSummer 5W2 2007
MATH 1720.003Calculus IISpring 2007
MATH 5820.001Probability and StatisticsSpring 2007
MATH 4650.001StatisticsSpring 2007
MATH 1710.002Calculus IFall 2006
MATH 2700.002Linear Algebra and Vector GeometryFall 2006
MATH 2700.001Linear Algebra and Vector GeometrySummer 5W1 2006
MATH 5120.001Introduction to AnalysisSpring 2006
MATH 2700.003Linear Algebra and Vector GeometrySpring 2006
MATH 5110.001Introduction to AnalysisFall 2005
MATH 1780.001Probability ModelsFall 2005
MATH 1680.001Elementary Probability and StatisticsSummer 5W2 2005
MATH 6940.700Individual ResearchSummer 8W1 2005
MATH 1720.020Calculus IISpring 2005
MATH 4650.001StatisticsSpring 2005
MATH 1710.006Calculus IFall 2004
MATH 4610.001ProbabilityFall 2004
MATH 5810.001Probability and StatisticsFall 2004

Published Intellectual Contributions

    Journal Article

  • Allaart, P.C., Kong, D. (2023). Critical values for the beta-transformation with a hole at 0. Ergodic Theory and Dynamical Systems. 43 (6) 1785-1828.
  • Allaart, P.C., Jackson, S.C., Jones, R.T., Lambert, D. (2023). On the existence of numbers with matching continued fraction and decimal expansions. Monatshefte für Mathematik. 202 (1) 1-30.
  • Allaart, P., Jones, R.T. (2023). Box-counting dimension and differentiability of box-like statistically self-affine functions. Journal of Mathematical Analysis and Applications. 521 (2) Article 126909, 20 pages.
  • Allaart, P.C., Kong, D. (2022). Density spectrum of Cantor measure. Nonlinearity. 35 (12) 6453–6484.
  • Allaart, P.C., Kong, D. (2021). Relative bifurcation sets and the local dimension of univoque bases. Ergodic Theory and Dynamical Systems. 41 (8) 2241-2273.
  • Allaart, P.C., Kong, D. (2021). On the smallest base in which a number has a unique expansion. Transactions of the American Mathematical Society. 374 (9) 6201-6249.
  • Norouzi Kandalan, R., Allaart, P.C., Namuduri, K. (2020). Mobility Accelerates Consensus-Building in Sensor Networks.. IEEE Sensors Letters. 4 (12) 1-4.
  • Allaart, P.C. (2020). The pointwise Holder spectrum of general self-affine functions on an interval.. Journal of Mathematical Analysis and Applications. 488 (2) Article 124096, 35 pages. Elsevier.
  • Allaart, P., Allen, A. (2019). A random walk version of Robbins' problem: small horizon. Mathematica Applicanda. 47 (2) 293-312.
  • Allaart, P. (2019). An algebraic approach to entropy plateaus in non-integer base expansions. Discrete and Continuous Dynamical Systems. 39 (11) 6507-6522.
  • Allaart, P., Kong, D. (2019). On the continuity of the Hausdorff dimension of the univoque set. Advances in Mathematics. 354 24 pages.
  • Allaart, P., Kong, D., Baker, S. (2019). Bifurcation sets arising from non-integer base expansions. Journal of Fractal Geometry. 6 (4) 301-341.
  • Allaart, P. (2018). Differentiability and Holder spectra of a class of self-affine functions. Advances in Mathematics. 328 1-39.
  • Allaart, P. (2017). Differentiability of a two-parameter family of self-affine functions. Journal of Mathematical Analysis and Applications. 450 954-968.
  • Allaart, P. (2017). On univoque and strongly univoque sets. Advances in Mathematics. 308 575-598.
  • Allaart, P., Islas, J.A. (2016). A sharp lower bound for choosing the maximum of an independent sequence. Journal of Applied Probability. 53 (4) 1041-1051.
  • Allaart, P. (2016). The infinite derivatives of Okamoto's function: an application of beta-expansions. Journal of Fractal Geometry. 3 (1) 1-31.
  • P. Allaart. (2014). Correction and strengthening of ``How large are the level sets of the Takagi function?".
  • P. Allaart. (2014). Digital sum inequalities and approximate convexity of Takagi-type functions.
  • P. Allaart. (2014). Hausdorff dimension of level sets of generalized Takagi functions.
  • Allaart, P. (2014). On the level sets of the Takagi-van der Waerden functions.
  • P. Allaart. (2013). Level sets of signed Takagi functions. Acta Mathematica Hungarica.
  • Allaart, P. (2012). How large are the level sets of the Takagi function?.
  • Allaart, P. (2012). Predicting the supremum: optimality of "stop at once or not at all".
  • Allaart, P. (2012). The finite cardinalities of level sets of the Takagi function.
  • with K. Kawamura. (2012). The Takagi function: a survey.
  • Allaart, P. (2011). An inequality for sums of binary digits, with application to Takagi functions http://arxiv.org/abs/1009.1308 Related Links: http://arxiv.org/abs/1009.1308.
  • P. Allaart and K. Kawamura. (2011). Takagi function: Survey. Denton,
  • Allaart, P. (2010). A general `bang-bang' principle for predicting the maximum of a random walk..
  • Allaart, P. (2010). How to stop near the top in a random walk.
  • Allaart, P. (2010). Optimal stopping rules for American and Russian options in a correlated random walk model..
  • with K. Kawamura. (2010). The improper infinite derivatives of Takagi's nowhere-differentiable function.
  • Allaart, P. (2009). A sharp ratio inequality for optimal stopping when only relative record times are observed.
  • with R. D. Mauldin. (2009). Injectivity of the Dubins-Freedman construction of random distributions.
  • Allaart, P. (2009). On a flexible class of continuous functions with uniform local structure.
  • Allaart, P. (2008). Distribution of the extrema of random Takagi functions.
  • with M. Monticino. (2008). Optimal buy/sell strategies for directionally reinforced processes..
  • with K. Kawamura. (2007). Dimensions of the coordinate functions of space-filling curves.
  • Allaart, P. (2007). Prophet inequalities for i.i.d. random variables with random arrival times.
  • with K. Kawamura. (2006). Extreme values of some continuous, nowhere differentiable functions.
  • Allaart, P. (2006). Prophet regions for discounted, uniformly bounded random variables.
  • with K. Kawamura. (2005). On the coordinate functions of L´evy's dragon curve.
  • Allaart, P. (2005). Prophet regions for independent [0, 1]-valued random variables with random dis- counting.
  • Allaart, P. (2004). An application of prophet regions to optimal stopping with a random number of observations.
  • Allaart, P. (2004). Optimal stopping rules for correlated random walks with a discount.
  • Allaart, P. (2004). Stopping the maximum of a correlated random walk, with cost for observation.
  • Allaart, P. (2003). Moments of the mean of Dubins-Freedman random probability distributions.
  • with M. Monticino. (2003). Pseudo-prophet inequalities in average-optimal stopping.
  • with M. Monticino. (2001). Optimal stopping rules for directionally reinforced processes.
  • Allaart, P. (2000). Inequalities relating maximal moments to other measures of dispersion.
  • Allaart, P. (1999). A sharp non-convexity bound for partition ranges of vector measures with atoms.
  • Allaart, P. (1999). Bounds on the non-convexity of ranges of vector measures with atoms.
  • Allaart, P. (1998). Minimax risk inequalities for the location-parameter classification problem.
  • Allaart, P. (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability. 34 288-291.

Contracts, Grants and Sponsored Research

    Grant - Research

  • Allaart, P.C. (Principal), "Non-integer base expansions and multifractal analysis," sponsored by Simons Foundation, Private, $42000 Funded. (2020 - 2025).
  • Allaart, P. (Principal), Lazebnik, K.Y. (Co-Principal), Kawamura, K. (Co-Principal), "Conference: Dynamical Systems and Fractal Geometry," sponsored by National Science Foundation, Federal, $32017 Funded. (2024 - 2025).
  • Allaart, P. (Principal), "Visitor grant for a 2.5 month research visit to Utrecht University," sponsored by NWO (Dutch National Science Foundation), International, $7000 Funded. (2018 - 2018).
  • Allaart, P. (Principal), Schmidt, R. (Principal), "Non-integer base expansions and multifractal analysis," sponsored by Simons Foundation, FOND, Funded. (2020 - 2025).
  • Allaart, P.C. (Principal), "Visitor grant for a 2.5 month research visit to Utrecht University," sponsored by NWO (Dutch National Science Foundation), International, Funded. (2018 - 2018).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE