Skip to main content

Santiago I. Betelu

Title: Adjunct Faculty

Department: Mathematics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • Doctorado, National University of Central Buenos Aires, 1997
    Major: Physics
    Dissertation: Plane Stokes Flows Near Singular Points of the Free Surface
  • BS, UNCPBA, Argentina (Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina), 1994
    Major: Physics; Thesis: Columnar to Equiaxed Transicion in Aluminum base Alloys

Current Scheduled Teaching

MATH 3410.002Differential Equations ISpring 2025
MATH 3420.001Differential Equations IISpring 2025
MATH 3350.001Introduction to Numerical AnalysisSpring 2025
MATH 3350.001Introduction to Numerical AnalysisFall 2024 Syllabus
MATH 2730.003Multivariable CalculusFall 2024 Syllabus
MATH 2730.410Multivariable CalculusFall 2024 Syllabus

Previous Scheduled Teaching

MATH 1710.415Calculus ISummer 5W2 2024 Syllabus SPOT
MATH 3420.001Differential Equations IISpring 2024 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisSpring 2024 Syllabus SPOT
MATH 3740.001Vector CalculusSpring 2024 Syllabus SPOT
MATH 3410.005Differential Equations IFall 2023 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisFall 2023 Syllabus SPOT
MATH 1780.003Probability ModelsFall 2023 Syllabus SPOT
MATH 3410.001Differential Equations ISummer 5W1 2023 Syllabus SPOT
MATH 3410.003Differential Equations ISpring 2023 Syllabus SPOT
MATH 3420.001Differential Equations IISpring 2023 Syllabus SPOT
MATH 3420.001Differential Equations IIFall 2022 Syllabus SPOT
MATH 2730.004Multivariable CalculusFall 2022 Syllabus SPOT
MATH 2730.510Multivariable CalculusFall 2022 Syllabus SPOT
MATH 3420.001Differential Equations IISummer 5W2 2022 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisSummer 5W2 2022 Syllabus SPOT
MATH 3410.002Differential Equations ISpring 2022 Syllabus SPOT
MATH 3410.004Differential Equations ISpring 2022 Syllabus SPOT
MATH 3410.003Differential Equations IFall 2021 Syllabus SPOT
MATH 3410.005Differential Equations IFall 2021 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisFall 2021 Syllabus SPOT
MATH 3680.001Applied StatisticsSummer 10W 2021 Syllabus SPOT
MATH 3420.001Differential Equations IISummer 5W2 2021 Syllabus SPOT
MATH 3420.001Differential Equations IISpring 2021 Syllabus
MATH 3350.001Introduction to Numerical AnalysisSpring 2021 Syllabus SPOT
MATH 3410.003Differential Equations IFall 2020 Syllabus SPOT
MATH 3410.005Differential Equations IFall 2020 Syllabus SPOT
MATH 3410.006Differential Equations IFall 2020
MATH 3420.001Differential Equations IISummer 5W2 2020 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisSummer 5W2 2020 Syllabus SPOT
MATH 3410.003Differential Equations ISpring 2020 Syllabus
MATH 3410.503Differential Equations ISpring 2020 Syllabus
MATH 2730.006Multivariable CalculusSpring 2020 Syllabus
MATH 3350.001Introduction to Numerical AnalysisFall 2019 Syllabus SPOT
MATH 3350.002Introduction to Numerical AnalysisFall 2019 Syllabus SPOT
MATH 3420.001Differential Equations IISummer 5W2 2019 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisSummer 5W2 2019 Syllabus SPOT
MATH 3410.006Differential Equations ISpring 2019 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisSpring 2019 Syllabus SPOT
MATH 3410.001Differential Equations IFall 2018 SPOT
MATH 3350.001Introduction to Numerical AnalysisFall 2018 Syllabus SPOT
MATH 3350.002Introduction to Numerical AnalysisFall 2018 Syllabus SPOT
MATH 3420.001Differential Equations IISummer 5W2 2018 Syllabus SPOT
MATH 3420.001Differential Equations IISpring 2018 Syllabus SPOT
MATH 3350.001Introduction to Numerical AnalysisSpring 2018 Syllabus SPOT
MATH 3410.002Differential Equations IFall 2017 Syllabus SPOT
MATH 3410.006Differential Equations IFall 2017 Syllabus SPOT
MATH 3420.001Differential Equations IISummer 5W2 2017 Syllabus SPOT
MATH 3410.004Differential Equations ISpring 2017 Syllabus SPOT
MATH 3410.005Differential Equations ISpring 2017 Syllabus SPOT
MATH 3410.004Differential Equations IFall 2016 Syllabus SPOT
MATH 3410.005Differential Equations IFall 2016 Syllabus SPOT
MATH 3420.001Differential Equations IISummer 5W2 2016 Syllabus SPOT
MATH 3410.004Differential Equations ISpring 2016 Syllabus SPOT
MATH 3410.005Differential Equations ISpring 2016 Syllabus SPOT
MATH 3410.002Differential Equations IFall 2015 Syllabus SPOT
MATH 1780.002Probability ModelsFall 2015 Syllabus SPOT
MATH 3410.003Differential Equations ISummer 5W2 2015 Syllabus SPOT
MATH 3420.001Differential Equations IISummer 5W2 2015 Syllabus SPOT
MATH 3410.002Differential Equations ISpring 2015 Syllabus
MATH 3410.005Differential Equations ISpring 2015 Syllabus
MATH 3410.003Differential Equations IFall 2014 Syllabus
MATH 3410.006Differential Equations IFall 2014 Syllabus
MATH 1650.300Pre CalculusFall 2014 Syllabus
MATH 1650.301Pre CalculusFall 2014
MATH 1650.302Pre CalculusFall 2014
MATH 1650.303Pre CalculusFall 2014
MATH 1650.304Pre CalculusFall 2014
MATH 3420.001Differential Equations IISummer 5W2 2014 Syllabus
MATH 3410.002Differential Equations ISpring 2014 Syllabus
MATH 3420.001Differential Equations IISpring 2014 Syllabus
MATH 1680.014Elementary Probability and StatisticsFall 2013 Syllabus
MATH 1680.861Elementary Probability and StatisticsFall 2013 Syllabus
MATH 3350.001Introduction to Numerical AnalysisFall 2013 Syllabus
MATH 1710.624Calculus ISpring 2011 Syllabus
MATH 3310.001Differential Equations for Engineering MajorsSpring 2011 Syllabus
MATH 5900.713Special ProblemsSpring 2011
MATH 5910.701Special ProblemsSpring 2011
MATH 1650.622Pre CalculusFall 2010 Syllabus
MATH 1780.001Probability ModelsFall 2010 Syllabus
MATH 5900.714Special ProblemsFall 2010
MATH 3310.001Differential Equations for Engineering MajorsSummer 5W2 2010
MATH 3310.001Differential Equations for Engineering MajorsSpring 2010
MATH 3420.001Differential Equations IISpring 2010
MATH 4900.715Special ProblemsSpring 2010
MATH 5900.702Special ProblemsSpring 2010
MATH 5910.704Special ProblemsSpring 2010
MATH 3310.002Differential Equations for Engineering MajorsFall 2009
MATH 3350.001Introduction to Numerical AnalysisFall 2009
MATH 6900.769Special ProblemsFall 2009
MATH 1720.210Calculus IISpring 2009
MATH 3420.001Differential Equations IISpring 2009
MATH 4900.715Special ProblemsSpring 2009
MATH 6900.727Special ProblemsSpring 2009
MATH 3410.001Differential Equations IFall 2008
MATH 3350.001Introduction to Numerical AnalysisFall 2008
MATH 6900.769Special ProblemsFall 2008
MATH 1780.001Probability ModelsSummer 5W2 2008
MATH 3420.001Differential Equations IISpring 2008
MATH 3610.001Real Analysis IISpring 2008
MATH 5900.726Special ProblemsSpring 2008
MATH 6910.771Special ProblemsSpring 2008
MATH 3310.001Differential Equations for Engineering MajorsFall 2007
MATH 5900.729Special ProblemsFall 2007
MATH 6900.769Special ProblemsFall 2007
MATH 3740.001Vector CalculusFall 2007
MATH 1720.001Calculus IISummer 5W2 2007
MATH 3410.002Differential Equations ISpring 2007
MATH 3420.001Differential Equations IISpring 2007
MATH 5900.726Special ProblemsSpring 2007
MATH 1680.006Elementary Probability and StatisticsFall 2006
MATH 5210.001Numerical AnalysisFall 2006
MATH 1720.001Calculus IISummer 5W2 2006
MATH 3410.002Differential Equations ISpring 2006
MATH 3350.001Introduction to Numerical AnalysisSpring 2006
MATH 5950.724Master's ThesisSpring 2006
MATH 3350.001Introduction to Numerical AnalysisFall 2005
MATH 5950.724Master's ThesisFall 2005
MATH 2730.002Multivariable CalculusFall 2005
MATH 3410.001Differential Equations ISpring 2005
MATH 6900.727Special ProblemsSpring 2005
MATH 1680.003Elementary Probability and StatisticsFall 2004
MATH 5900.729Special ProblemsFall 2004

Published Intellectual Contributions

    Conference Proceeding

  • M Arrayas,S Betelu, M Fontelos, J Trueba. (2009). Analytical estimates of the dispersion curve in planar ionization fronts, AIP conf proc, vol 1118, pp. 68-72.
  • Journal Article

  • Betelu SI, Iaia J. (2013). Solutions of the porous medium equation with degenerate interfaces.
  • M. Arrayas, S. Betelu and M. A. Fontelos. (2008). Fingering from ionization fronts in Plasmas.
  • S. I. Betelu, N. D. Alikakos and X. Chen. (2006). Explicit Stationary Solutions in Multiple Well Dynamics and Non-Uniqueness of interfacial energy densities.
  • S. I. Betelu, M. A. Fontelos, U. Kindelan and O. Vantzos. (2006). Singularities on charged viscous droplets.
  • S. I. Betelu and M. A. Fontelos. (2005). Spreading of a charged microdroplet.
  • S. I. Betelu, M. A. Fontelos and U. Kindelan. (2005). The shape of charged drops: Symmetry breaking bifurcations and numerical results.
  • Niethammer M, Betelu S, Sapiro G, et al.. (2004). Area based medial axis of planar curves.
  • S. I. Betelu and M. A. Fontelos. (2004). Capillarity driven spreading of circular drops of shear thinning fluid.
  • S. I. Betelu and M. A. Fontelos. (2003). Capillarity driven spreading of power-law fluids.
  • S. I. Betelu and J. R. King. (2003). Explicit solutions of a two-dimensional fourth order non-linear diffusion equation.
  • S. Betelu, R. Gulliver and W. Littman. (2002). Boundary control of PDEs via curvature flows: the view from the boundary, II.
  • S. B. Angenent, D. G. Aronson, S. I. Betelu and J. S. Lowengrub. (2001). Focusing of an elongated hole in porous medium flow.
  • S. I. Betelu, D. G. Aronson. (2001). Focusing of non-circular self-similar shock waves.
  • J. Y. Wang, S. Betelu, and B. M. Law. (2000). 'Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements.
  • S. Betelu. (2000). A two-dimensional corner solution for a nonlinear diffusion equation.
  • S. I. Betelu, G. Sapiro, A. Tannenbaum and P. Giblin. (2000). Noise-resistant affine skeletons of planar curves.
  • S. I. Betelu, G. Sapiro and A. Tannenbaum. (2000). On the computation of Affine Skeletons of Plane Curves and the Detection of Skew Symmetries.
  • S. I. Betelu, D. G. Aronson and S. B. Angenent. (2000). Renormalization study of two-dimensional convergent solutions of the porous medium equation.
  • S. Betelu, J. Diez. (1999). A two dimensional similarity solution for capillary driven flows.
  • J. Wang, S. Betelu and B. Law. (1999). Line tension effects near first-order wetting transitions.
  • S. Betelu, Law B. M. and Huang C. C.. (1999). Spreading dynamics of terraced droplets.
  • S. Betelu, J. Diez and R. Gratton. (1998). Cusped ripples at the plane surface of a viscous liquid.
  • J. Diez, L. P. Thomas, S. Betelu, R. Gratton, B. Marino, J. Gratton, D. G. Aronson and S. B. Angenent. (1998). Non-circular focussing flow in viscous gravity currents.
  • S. Betelu, R. Gratton and J. Diez. (1998). Observation of cusps during the levelling of free surfaces in viscous flows.
  • J. Diez, S. Betelu and R. Gratton. (1998). The crumbling of a viscous prism with an inclined free surface.
  • S. Betelu , J. Diez, L. Thomas, R. Gratton, B. Marino. (1997). A boundary-elements method for viscous gravity currents.
  • S. Betelu , J. Diez, L. Thomas, R. Gratton, B. Marino. (1996). Instantaneous viscous flow in a corner bounded by free surfaces.
  • L. Thomas, R. Gratton, B. Marino, S. Betelu , J. Diez. (1996). Measurement of the slope of a liquid free surface along a line by a schlieren system with anamorphic elements.
  • R. Gratton, J. Diez, L. Thomas, B. Marino, S. Betelu. (1996). Quasi-self-similarity for wetting drops.
  • B. Marino, L. Thomas, R. Gratton, J. Diez, S. Betelu. (1996). Waiting time solutions of a non-linear diffusion Equation: Experimental study of a creeping flow near a waiting front.
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE