Skip to main content

Sandra J. Quintanilla

Title: Professor

Department: Physics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, University of London, 1986
    Major: Physics
    Dissertation: A Theoretical Study of Elastic Electron Positronium Scattering and Photo-absorption by the Positronium Negative Ion
  • BS, University of London, 1983
    Major: Physics

Current Scheduled Teaching

PHYS 6950.761Doctoral DissertationFall 2024
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2024 Syllabus
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2024 Syllabus

Previous Scheduled Teaching

PHYS 6950.755Doctoral DissertationSpring 2024
PHYS 5510.001Quantum Mechanics IISpring 2024 Syllabus SPOT
PHYS 6950.761Doctoral DissertationFall 2023
PHYS 6940.770Individual ResearchFall 2023
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2023 Syllabus SPOT
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2023 Syllabus SPOT
PHYS 6950.755Doctoral DissertationSpring 2023
PHYS 6940.757Individual ResearchSpring 2023
PHYS 5510.001Quantum Mechanics IISpring 2023 SPOT
PHYS 6950.761Doctoral DissertationFall 2022
PHYS 6940.770Individual ResearchFall 2022
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2022 Syllabus SPOT
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2022 Syllabus SPOT
PHYS 6950.761Doctoral DissertationSpring 2022
PHYS 5510.001Quantum Mechanics IISpring 2022 Syllabus SPOT
PHYS 5900.751Special ProblemsSpring 2022
PHYS 6950.761Doctoral DissertationFall 2021
PHYS 5500.001Quantum Mechanics IFall 2021 Syllabus SPOT
PHYS 5900.761Special ProblemsFall 2021
PHYS 6950.761Doctoral DissertationSpring 2021
PHYS 4310.001Quantum MechanicsSpring 2021 Syllabus SPOT
PHYS 4310.201Quantum MechanicsSpring 2021 Syllabus SPOT
PHYS 4910.761Special ProblemsSpring 2021
PHYS 5900.761Special ProblemsSpring 2021
PHYS 6950.761Doctoral DissertationFall 2020
PHYS 6940.761Individual ResearchFall 2020
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2020 Syllabus SPOT
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2020 Syllabus SPOT
PHYS 5900.761Special ProblemsFall 2020
PHYS 4955.003Senior Thesis CapstoneSummer 10W 2020
PHYS 6950.761Doctoral DissertationSpring 2020
PHYS 6940.761Individual ResearchSpring 2020
PHYS 4310.001Quantum MechanicsSpring 2020 Syllabus
PHYS 4310.201Quantum MechanicsSpring 2020 Syllabus
PHYS 4950.017Senior ThesisSpring 2020
PHYS 6950.761Doctoral DissertationFall 2019
PHYS 6940.761Individual ResearchFall 2019
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2019 Syllabus SPOT
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2019 Syllabus SPOT
PHYS 6950.761Doctoral DissertationSpring 2019
PHYS 6940.761Individual ResearchSpring 2019
PHYS 4310.001Quantum MechanicsSpring 2019 Syllabus SPOT
PHYS 4310.201Quantum MechanicsSpring 2019 Syllabus SPOT
PHYS 5900.761Special ProblemsSpring 2019
PHYS 6950.761Doctoral DissertationFall 2018
PHYS 6940.761Individual ResearchFall 2018
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2018 Syllabus SPOT
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2018 Syllabus SPOT
PHYS 5900.761Special ProblemsFall 2018
PHYS 6940.761Individual ResearchSpring 2018
PHYS 5900.761Special ProblemsSpring 2018
PHYS 6940.761Individual ResearchFall 2017
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2017 Syllabus SPOT
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2017 Syllabus SPOT
PHYS 5500.001Quantum Mechanics IFall 2017 SPOT
PHYS 4900.761Special ProblemsFall 2017
PHYS 5900.761Special ProblemsFall 2017
PHYS 6940.761Individual ResearchSpring 2017
PHYS 4310.001Quantum MechanicsSpring 2017 Syllabus SPOT
PHYS 4310.201Quantum MechanicsSpring 2017 Syllabus
PHYS 5510.001Quantum Mechanics IISpring 2017 SPOT
PHYS 4955.009Senior Thesis CapstoneSpring 2017
PHYS 5900.761Special ProblemsSpring 2017
PHYS 6940.761Individual ResearchFall 2016
PHYS 5500.001Quantum Mechanics IFall 2016 SPOT
PHYS 4950.764Senior ThesisFall 2016
PHYS 4900.761Special ProblemsFall 2016
PHYS 4310.001Quantum MechanicsSpring 2016 Syllabus SPOT
PHYS 4310.201Quantum MechanicsSpring 2016
PHYS 5900.761Special ProblemsSpring 2016
PHYS 5500.001Quantum Mechanics IFall 2015 SPOT
PHYS 5910.761Special ProblemsFall 2015
PHYS 6950.761Doctoral DissertationSummer 5W1 2015
PHYS 6950.761Doctoral DissertationSpring 2015
PHYS 4310.001Quantum MechanicsSpring 2015 Syllabus
PHYS 4310.201Quantum MechanicsSpring 2015
PHYS 4910.761Special ProblemsSpring 2015
PHYS 5900.761Special ProblemsSpring 2015
PHYS 6950.761Doctoral DissertationFall 2014
PHYS 5500.001Quantum Mechanics IFall 2014
PHYS 4910.761Special ProblemsFall 2014
PHYS 6950.761Doctoral DissertationSpring 2014
PHYS 4310.001Quantum MechanicsSpring 2014 Syllabus
PHYS 6950.761Doctoral DissertationFall 2013
PHYS 4210.001Electricity and MagnetismFall 2013 Syllabus
PHYS 4210.201Electricity and MagnetismFall 2013 Syllabus
PHYS 6950.761Doctoral DissertationSpring 2013
PHYS 4310.001Quantum MechanicsSpring 2013 Syllabus
PHYS 4310.201Quantum MechanicsSpring 2013 Syllabus
PHYS 6950.761Doctoral DissertationFall 2012
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2012 Syllabus
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2012
PHYS 6950.761Doctoral DissertationSpring 2012
PHYS 4310.001Quantum MechanicsSpring 2012 Syllabus
PHYS 4310.201Quantum MechanicsSpring 2012
PHYS 6950.761Doctoral DissertationFall 2011
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2011 Syllabus
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2011
PHYS 6950.761Doctoral DissertationSpring 2011
PHYS 4310.001Quantum MechanicsSpring 2011 Syllabus
PHYS 4310.201Quantum MechanicsSpring 2011
PHYS 6910.761Special ProblemsSpring 2011
PHYS 6950.761Doctoral DissertationFall 2010
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2010 Syllabus
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2010
PHYS 6940.761Individual ResearchSummer 5W1 2010
PHYS 6940.761Individual ResearchSpring 2010
PHYS 6910.761Special ProblemsSpring 2010
PHYS 6940.761Individual ResearchFall 2009
PHYS 3310.001Mathematical Methods in the Physical SciencesFall 2009
PHYS 3310.201Mathematical Methods in the Physical SciencesFall 2009
PHYS 6940.767Individual ResearchSummer 10W 2009
PHYS 6940.761Individual ResearchSpring 2009
PHYS 6910.761Special ProblemsSpring 2009
PHYS 6000.002Mathematical Methods of Physics IFall 2008
PHYS 5910.761Special ProblemsFall 2008
PHYS 5910.761Special ProblemsSummer 5W2 2008
PHYS 4910.761Special ProblemsSpring 2008
PHYS 5500.001Quantum Mechanics IFall 2007
PHYS 4910.753Special ProblemsFall 2007
PHYS 5910.761Special ProblemsFall 2007
PHYS 4310.002Quantum MechanicsSpring 2007
PHYS 4310.202Quantum MechanicsSpring 2007
PHYS 5910.761Special ProblemsSpring 2007
PHYS 5500.001Quantum Mechanics IFall 2006
PHYS 5930.750Research Problems in Lieu of ThesisFall 2006
PHYS 4910.761Special ProblemsFall 2006
PHYS 5920.761Research Problems in Lieu of ThesisSummer 5W2 2006
PHYS 5910.761Special ProblemsSummer 5W2 2006
PHYS 5910.761Special ProblemsSpring 2006
PHYS 5500.001Quantum Mechanics IFall 2005
PHYS 5920.002Research Problems in Lieu of ThesisFall 2005
PHYS 5910.761Special ProblemsSummer 5W1 2005
PHYS 6910.761Special ProblemsSummer 5W1 2005
PHYS 4310.001Quantum MechanicsSpring 2005
PHYS 4310.201Quantum MechanicsSpring 2005
PHYS 6910.756Special ProblemsSpring 2005
PHYS 6000.002Mathematical Methods of Physics IFall 2004
PHYS 6900.761Special ProblemsFall 2004
PHYS 6900.766Special ProblemsFall 2004

Published Intellectual Contributions

    Abstract for a conference

  • Ward, S.J., Van Reeth, P. (2016). Deep Minimum in the Differential Cross Section for Ps Formation in Positron-Hydrogen Collisions. 61 (8) 193.
  • Abstract for a national conference

  • DeMars, C.M., Kent, J.B., Ward , S.J. (2019). Deep minimum in the Coulomb-Born TDCS for e$^-$-He and e$^+$-He ionization. Bulletin of the American Physical Society. 64 (4) L01 13, 119 (1 pp)). http://meetings.aps.org/Meeting/DAMOP19/Session/L01.13
  • Ward , S.J., Alrowaily, A.W., Van Reeth, P. (2019). Multichannel Effective Range Theory Analysis of Zeros in the Positronium formation Scattering Amplitude for Positron-Hydrogen Collisions. Bulletin of the American Physical Society. 64 (4) E01 32, 50-51 (2 pp). American Physical Society. http://meetings.aps.org/Meeting/DAMOP19/Session/E01.32
  • Medrano, G., Ward , S.J., Van Reeth, P. (2019). Variational Calculations of the Ps-Ps System. Bulletin of the American Physical Society. 64 (4) S01 25, 193 (1pp). http://meetings.aps.org/Meeting/DAMOP19/Session/S01.2
  • Abstracts and Proceedings

  • Ward Quintanilla, S.J., DeMars, C.M. (2023). Deep minima in the Coulomb-Born triply differential cross sections for electron and positron ionization of hydrogen and helium. Bulletin of the American Physical Society. 68 (7) https://meetings.aps.org/Meeting/DAMOP23/Session/K04.3
  • Ward Quintanilla, S.J. (2023). Electron-Positronium Scattering and the Photodetachment of the Positronium Negative Ion. https://meetings.aps.org/Meeting/GEC23/Session/GT3.1
  • Ward Quintanilla, S.J., Mitchell, W. (2023). Photodetachment of the Positronium Negative Ion (Ps$^-$) and the $^1$D-wave e$^-$-Ps scattering. Bulletin of the American Physical Society. 68 (7) https://meetings.aps.org/Meeting/DAMOP23/Session/N01.22
  • Ward, S.J., Mitchell, W.J. (2022). $^{1,3}S$ and $^{1,3}P$ electron-positronium scattering. Bulletin of the American Physical Society. 67 (7) Abstract F01.00021. Dept of Physics
  • DeMars, C.M., Claypool, J., Ward Quintanilla, S.J., Van Reeth, P. (2021). Comparison of elastic scattering of electron, positron and positronium from helium. Bulletin of the American Physical Society. 66 (Number 6) V01.00017. American Physical Society. https://meetings.aps.org/Meeting/DAMOP21/Session/V01.17
  • DeMars, C.M., Josiah, C.J., Ward, S.J., Van Reeth, P. (2021). Comparison of phase shifts and cross sections as a function of velocity for positron, electron and positronium elastic scattering from helium. Bulletin of the American Physical Society. 66 (Number 7) GT61.00061. American Physical Society. https://meetings.aps.org/Meeting/GEC21/Session/GT61.61
  • Mitchell, W.J., Ward Quintanilla, S.J. (2021). Singlet p-wave elastic electron-positronium scattering}". Bulletin of the American Physical Society. 66 (Number 7) GT61.00071. American Physical Society. https://meetings.aps.org/Meeting/GEC21/Session/GT61.71
  • Quintanilla, S.J., Medrano, G., Van Reeth, P.J. (2021). Variational calculations of the bound-state energy of Ps$_2$. Bulletin of the American Physical Society. 66 (Number 6) N01.00002. American Physical Society. https://meetings.aps.org/Meeting/DAMOP21/Session/N01.2
  • DeMars, C.M., Ward, S.J., Kent, J.B. (2020). Deep minima in the Coulomb-Born triply differential cross section for electron and positron ionization of hydrogen and helium. Bulletin of the American Physical Society. 65 (4) American Physical Society. http://meetings.aps.org/Meeting/DAMOP20/Session/Q01.26
  • DeMars, C.M., Ward, S.J., Kent, J.B. (2020). Deep minima in the Coulomb-Born triply differential cross section for electron and positron ionization of hydrogen and helium. Bulletin of the American Physical Society. http://meetings.aps.org/Meeting/GEC20/Session/LT1.3
  • Ward, S.J., Alrowaily, A.W., Van Reeth, P. (2020). Deep minimum in the Ps-formation differential cross section for positron-helium collisions in the Ore Gap. Bulletin of the American Physical Society. 65 (4) http://meetings.aps.org/Meeting/DAMOP20/Session/E01.28
  • S. J. Ward, Denton Woods, and P. Van Reeth. (2015). An Investigation of Positronium-Hydrogen Collisions. 60 (7) 182-183. http://meetings.aps.org/link/BAPS.2015.DAMOP.Q1.112
  • S. J. Ward and J. H. Macek. (2014). http://meetings.aps.org/link/BAPS.2014.DAMOP.Q1.37
  • S. J. Ward and J. H. Macek. (2014). http://meetings.aps.org/link/BAPS.2014.GEC.MW1.7
  • Denton Woods, P. Van Reeth and S. J. Ward. (2014). http://meetings.aps.org/link/BAPS.2014.DAMOP.Q1.55
  • S. J. Ward and J. H. Macek. (2013). Deep minimim in the Coulomb-Born TDCS for inner-shell ionization of carbon by electron impact. http://meetings.aps.org/link/BAPS.2013.GEC.HW1.19
  • S. J. Ward. (2013). Positron Collisions from Simple Atoms and Positronium-Hydrogen Collisions. http://meetings.aps.org/link/BAPS.2013.GEC.KW5.1
  • Denton Woods, S. J. Ward and P. Van Reeth. (2013). Variational Calculations of Low-Energy Elastic Ps-H Scattering. http://meetings.aps.org/link/BAPS.2013.DAMOP.Q1.122
  • Denton Woods, S. J. Ward and P. Van Reeth. (2012). Low-energy S- and P-wave Positronium-Hydrogen Collisions.
  • S. J. Ward and J. Shertzer. (2011). Hyperspherical hidden crossing calculation of Ps formation in low-energy e^+-Na collisions.
  • D. Woods, S. J. Ward and P. Van Reeth. (2011). Low-Energy S-Wave Positronium-Hydrogen Collisions.
  • S. J. Ward and J. H. Macek. (2011). Vortices in Coulomb-Born calculations for inner-shell ionization of carbon by electron-impact.
  • Janine Shertzer and S. J. Ward. (2010). Binding Energy and Geometry of e^+Na.
  • D. Woods, S. J. Ward and P. Van Reeth. (2010). The Binding Energy of PsH.
  • Janine Shertzer and S. J. Ward. (2009). Binding Energy Calculations for e^+Li and e^+Na.
  • S. J.Ward, J. H. Macek and S. Yu. Ovchinnikov. (1997). "The Hidden Crossing Method Applied toPositroniumFormation".
  • S.J.Ward. (1993). "RecentDevelopmentsinthe TheoryofPositron-Hydrogen Collisions".
  • R.P. McEachran, M. Horbatsch, A. D. Stauffer and S. J. Ward. (1990). "Positron-AlkaliAtom Scattering".
  • M. Horbatsch, S. J.Ward, McEachran and A. D. Stauffer. (1990). "Resonances inPositron-Alkali Close-Coupling Calculations".
  • A. D. Stauffer, K. Bartschat, R. I. Campeanu, M. Horbatsch, R.P. McEachran, L. A.Parcell and S. J.Ward. (1990). "Theoretical Calculations of Positron Collisions with Atoms".
  • S.J.Ward,J.W.Humberstonand M. R. C. McDowell. (1986). "The ScatteringofLow-Energy ElectronsbyPositronium".
  • Journal Article

  • Alrowaily, A.W., Ward, S.J., Van Reeth, P. (2021). Deep Minimum and a Vortex for Positronium Formation in Low-Energy Positron-Helium Collisions. ATOMS. 9 56. MDPI. https://www.mdpi.com/2218-2004/9/3/56
  • DeMars, C.M., Ward, S.J., Colgan, S.J., Amami, S., Madison, D.H. (2020). Deep Minima in the Triply Differential Cross Section for Ionization of Atomic Hydrogen by Electron and Positron Impact. 8(2) 26 (12 pages). MDPI. https://www.mdpi.com/2218-2004/8/2/26
  • DeMars, C.M., Kent, J.B., Ward, S.J. (2020). Deep minima in the Coulomb-Born triply differential cross sections for ionization of helium by electron and positron impact. The European Physical Journal D. 74 48 (pages 1-8). SpringerLink. https://link.springer.com/article/10.1140/epjd/e2019-100512-x
  • Alrowaily, A.W., Ward , S.J., Van Reeth, P. (2019). Deep minima and vortices for positronium formation in low-energy positron-hydrogen collisions. Journal of Physics B: Atomic, Molecular and Optical Physics. 52 205201 (11pp). Bristol, Institute of Physics.
  • Van Reeth, P., Woods, D., Ward, S.J., Humberston, J.W. (2016). Corrigendum: Comparison of positronium, positron and electron scattering. Journal of Physics B: Atomic, Molecular and Optical Physics. 49 169501 (1pp).
  • Van Reeth, P., Woods, D., Ward, S.J., Humberston, J.W. (2016). Comparison of positronium, positron and electron collisions with hydrogen at low velocities. Journal of Physics B: Atomic, Molecular and Optical Physics. 49 114001.
  • Woods, D., Ward, S.J., Van Reeth, P. (2015). Detailed investigation of low-energy positronium-hydrogen scattering. Physical Review A. 92 022713-1 -- 022713-17. http://journals.aps.prg/pra
  • Ward, S.J., Macek, J.H. (2014). Effect of a vortex in the triply differential cross section for electron impact K-shell ionization of carbon. 90 062709. http://journals.aps.org/pra/
  • J. Shertzer and S. J. Ward. (2010). Binding Energy and Structure of e^+Na,.
  • Krista Jansen,S.J.Ward,J. ShertzerandJ.H. Macek. (2009). "Absolute Cross Section for Positron-Impact Ionization of Hydrogen Near Threshold".
  • Krista Jansen, S. J.Ward,. (2008). "Near-ThresholdPositron Impact Ionization of Hydrogen".
  • S. J.Ward, J. Shertzer, S.Yu. Ovchinnikov and J. H. Macek. (2007). "Optimizing the Paths for Including the Correction Term to the Hyperspherical Hidden Crossing Method: Application to Formationine+ -Li Collisions".
  • S.J.Ward. (2007). "The Photodetachmentof Ps− and Low-Energye+ -H Collisions".
  • J. Shertzer and S. J.Ward. (2006). "Binding Energy and Structure of e+ Li and e− Li using a Parametric Model Potential".
  • S. J.Ward and J. Shertzer. (2005). "PositroniumFormation Cross Section forPositron-Lithium Collisions".
  • S. J.Ward and J. Shertzer. (2004). "E ff ect of the Core Polarization Term on Ps Formation in Low-Energy e+ -Li Collisions".
  • J. Sandstr¨om,G. Haeffler, I. Kiyan, U. Berzinsh, D. Hanstorp, D. J.Pegg, J. C. Hunnell and S. J.Ward. (2004). "E ff ectofPolarizationon Photodetachment Thresholds".
  • S. J.Ward and J. Shertzer. (2003). "ApplicationoftheHyperspherical Hidden Crossing MethodtoPositron-Lithium Collisions".
  • S. J.Ward. (2002). "Positronium Formation in Low-Energy Positron Collisions with One-and Two-Electron Atoms".
  • S.J.Ward,J.C. HunnellandJ.H. Macek. (2002). "The E ff ect of thePolarizationPotential on Low-EnergyAtomic Processes".
  • S. J. Ward and J. H. Macek. (2000). "E ff ective Range Analysis of Positron-Hydrogen Collisions".
  • S.J.Ward,J.H. Macek and S.Yu.. (1999). "Applicationof the Hidden Crossing Method to Positronium Formation".
  • Other

  • Ward , S.J., Alrowaily, A.W., Reeth, P.V. (2018). Vortices for Ps formation in positron-hydrogen collisions Acceptance in the Ore Gap. Bulletin of the American Physical Society. 63 (No. 5) T01 31 pg 189. American Physical Society. http://meetings.aps.org/Meeting/DAMOP18/Session/T01.31
  • Ward, S., Kent, J.B. (2017). Deep minimum in the Coulomb-Born TDCS for electron-impact ionization of atomic hydrogen. Bulletin of the American Physical Society. 62 (Issue Number 10) 28 (GT1 1). http://meetings.aps.org/Meeting/GEC17/Session/GT1.1
  • Ward, S.J., Van Reeth, P., Alrowaily, A.W. (2017). Vortices for Ps formation in positron-hydrogen collisions. Bulletin of the American Physical Society. 62 (Issue Number 8) 137 (K1 148). American Physical Society. http://meetings.aps.org/Meeting/DAMOP17/Session/K1.148
  • Popular Press Article

  • Krista Jansen,S.J.Ward,J. Shertzerand J.H. Macek. (2008). "Absolute Cross Section forPositron Impact Ionization of Hydrogen Near Threshold".
  • Krista Jansen, S. J.Ward, J. Shertzer and J. H. Macek. (2007). "Near ThresholdPositron Impact Ionization of Hydrogen".
  • S.Ward andJ. Shertzer. (2003). "The Application of the Hyperspherical Hidden Crossing Method toPositroniumFormation inPositron-Lithium Scattering".
  • J.Ward and J. Shertzer. (2002). "Hyperspherical Hidden Crossing CalculationofPositron-Lithium Collisions".
  • J. C. Hunnell, S. J.Ward, J. Sandstrom - D. Hanstorp and D. J.Pegg. (2002). "Photodetachment of Alkali Negative Ions".
  • S. J.Ward. (2001). "E ff ective Range Theory Analysis ofPositron-Helium Collisions".
  • S. J.Ward and J. H. Macek. (2000). "Virtual State of thePositronium-Proton System".
  • S. J.Ward and J. H. Macek. (1999). "Analysis of Positron-Hydrogen Collisions using an E ff ective Range Theory".
  • S.J.Ward,J.H. Macekand S.Yu. Ovchinnikov. (1998). "Hidden Crossing Method AppliedtoPositroniumFormation".
  • S. J.Ward, J. H. Macek and S.Yu. Ovchinnikov. (1998). "Hidden Crossing Theory Applied to Ps-formation inPositron-Hydrogen Collisions".
  • S. J.Ward, E. G. Roth, B. N. Guo, D. E. Golden and D. W. Mueller. (1997). "Anti-Capture to the Continuum via a Double Collision Mechanism in (e,2e) Collisions".
  • S. J.Ward, J. H. Macek and S.Yu. Ovchinnikov. (1997). "The Hidden Crossing Method Applied toPositroniumFormation".
  • S.J.Ward, J. H. Macek and S.Yu. Ovchinnikov. (1996). "The Hidden Crossing Method Applied to Positronium Formation".
  • S.J.Ward. (1995). "Recent Developmentin the TheoryofFastPositron-Atom Collisions".
  • S. J.Ward and J. H. Macek. (1994). "PositroniumFormationbyElectronic Capture from Hydrogenic Ions".
  • S.J.Ward andJ.H. Macek. (1994). "Single and Double Photoionizationof Helium".
  • S.J.WardandJ.H. Macek. (1994). "WaveFunctionsforContinuum Statesof ChargedFragments".
  • S. J. Ward and J. H. Macek. (1991). "A Variational Principle for Time-Dependent Interactions".
  • S.J.Ward,M. Horbatsch,R.P. McEachranandA.D. Stauffer. (1989). "Close-Coupling ApproachtoPositron Scattering for Lithium, Sodium andPotassium".
  • S.J.Ward,M. Hor¬batsch, R. P. McEachran and A. D. Stauffer. (1989). "Close-Coupling CalculationsofLow-EnergyPositron-Alkali Collisions".
  • S.J.Ward,M. Horbatsch, R.P. McEachran and A. D. Stauffer. (1989). "ResonancesinLow-EnergyPositron ScatteringfromLi,NaandK".
  • S.J.Ward,M. Horbatsch, R.P. McEachran and A. D. Stauffer. (1988). "Close-coupling ApproachtoPositron Scattering fromPotassium".
  • S.J.Ward,M. Hor¬batsch,R.P. McEachranandA.D. Stauffer. (1988). "Theoretical StudiesofLow-EnergyPositron-AlkaliAtom Scattering".
  • S. J. Ward, J. W. Humberston and M. R. C. McDowell. (1987). "Elastic Scattering of Electrons (or Positrons) from Positronium and the Photodetachment of the Positronium Negative Ion".
  • S. J.Ward, J. W. Hum¬berston and M. R. C. McDowell. (1986). "The Photodetachment of the Negative Ion ofPositronium (Ps−)".
  • S.J.Ward,J.W. Hum¬berston and M. R. C. McDowell. (1985). "The ScatteringofLow-Energy S-Wave ElectronsbyPositronium".

Contracts, Grants and Sponsored Research

    Grant - Research

  • Ward, S.J., "Low-energy atomic processes including ones involving a positron," sponsored by National Science Foundation, Federal, $100000 Funded. (2022 - 2025).
  • Ward (Quintanilla), S.J. (Principal), "Theoretical Investigation of Low-Energy Positron and Positronium Collisions," sponsored by National Science Foundation, Federal, $90992 Funded. (2017 - 2021).
  • Ward Quintanilla, S., "Positronium-positronium scattering," sponsored by Physics Department, University of North Texas, University of North Texas, $3469.02 Funded. (2017 - 2017).
  • Quintanilla, S.J. (Principal), "Theoretical Investigation of Low-Energy Positron and Positronium Collisions," sponsored by National Science Foundation, FED, Funded. (2017 - 2021).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE