Skip to main content

William A. Cherry

Title: Associate Professor

Department: Mathematics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, Yale University, 1993
    Major: Mathematics
    Specialization: Hyperbolic p-Adic Analytic Spaces
  • MS, Yale University, 1990
    Major: Mathematics
  • BAS, Stanford University, 1988
    Major: Mathematics & Political Science

Current Scheduled Teaching

MATH 4060.001Foundations of GeometrySpring 2025
MATH 3000.001Real Analysis ISpring 2025
MATH 1680.350Elementary Probability and StatisticsFall 2024 Syllabus
MATH 1680.380Elementary Probability and StatisticsFall 2024 Syllabus
UGMT 1300.351Tutorial Option C in Developmental MathematicsFall 2024 Syllabus
UGMT 1300.352Tutorial Option C in Developmental MathematicsFall 2024 Syllabus
UGMT 1300.381Tutorial Option C in Developmental MathematicsFall 2024 Syllabus
UGMT 1300.382Tutorial Option C in Developmental MathematicsFall 2024 Syllabus

Previous Scheduled Teaching

MATH 1720.110Calculus IISummer 5W1 2024 Syllabus SPOT
MATH 1720.111Calculus IISummer 5W1 2024 Syllabus SPOT
MATH 1720.112Calculus IISummer 5W1 2024 Syllabus SPOT
MATH 4510.001Abstract Algebra IISpring 2024 Syllabus SPOT
MATH 1680.120Elementary Probability and StatisticsSpring 2024 Syllabus SPOT
MATH 1680.121Elementary Probability and StatisticsSpring 2024 Syllabus SPOT
MATH 1680.122Elementary Probability and StatisticsSpring 2024 Syllabus SPOT
MATH 1680.123Elementary Probability and StatisticsSpring 2024 Syllabus SPOT
MATH 5700.001Selected Topics in Contemporary MathematicsSpring 2024 SPOT
MATH 1710.200Calculus IFall 2023 Syllabus SPOT
MATH 1680.210Elementary Probability and StatisticsFall 2023 Syllabus SPOT
MATH 1680.211Elementary Probability and StatisticsFall 2023 SPOT
MATH 1680.212Elementary Probability and StatisticsFall 2023 SPOT
MATH 1680.213Elementary Probability and StatisticsFall 2023 SPOT
MATH 4060.001Foundations of GeometrySpring 2023 Syllabus SPOT
MATH 3740.001Vector CalculusSpring 2023 Syllabus SPOT
MATH 6950.712Doctoral DissertationFall 2022
MATH 1680.170Elementary Probability and StatisticsFall 2022 Syllabus SPOT
MATH 1680.171Elementary Probability and StatisticsFall 2022 Syllabus
MATH 1680.172Elementary Probability and StatisticsFall 2022 Syllabus
MATH 1680.173Elementary Probability and StatisticsFall 2022 Syllabus
MATH 3610.001Real Analysis IIFall 2022 Syllabus SPOT
MATH 4510.001Abstract Algebra IISpring 2022 Syllabus SPOT
MATH 6950.719Doctoral DissertationSpring 2022
MATH 3000.001Real Analysis ISpring 2022 Syllabus SPOT
MATH 5700.002Selected Topics in Contemporary MathematicsSpring 2022 SPOT
MATH 1710.200Calculus IFall 2021 Syllabus SPOT
MATH 1710.201Calculus IFall 2021 Syllabus
MATH 1680.160Elementary Probability and StatisticsFall 2021 Syllabus SPOT
MATH 1680.161Elementary Probability and StatisticsFall 2021
MATH 1680.162Elementary Probability and StatisticsFall 2021
MATH 1680.163Elementary Probability and StatisticsFall 2021
MATH 1680.230Elementary Probability and StatisticsFall 2021 Syllabus SPOT
MATH 1680.231Elementary Probability and StatisticsFall 2021
MATH 1680.232Elementary Probability and StatisticsFall 2021
MATH 1680.233Elementary Probability and StatisticsFall 2021
MATH 5950.702Master's ThesisFall 2021
MATH 1650.150Pre CalculusFall 2021 Syllabus SPOT
MATH 1650.151Pre CalculusFall 2021 Syllabus
MATH 1650.152Pre CalculusFall 2021
MATH 1650.153Pre CalculusFall 2021 Syllabus
MATH 5950.702Master's ThesisSummer 5W2 2021
MATH 1720.622Calculus IISpring 2021 Syllabus SPOT
MATH 4060.001Foundations of GeometrySpring 2021 Syllabus SPOT
MATH 5950.702Master's ThesisSpring 2021
MATH 1710.621Calculus IFall 2020 Syllabus SPOT
MATH 5950.702Master's ThesisFall 2020
MATH 3610.001Real Analysis IIFall 2020 Syllabus SPOT
MATH 4060.001Foundations of GeometrySpring 2020 Syllabus
MATH 5950.702Master's ThesisSpring 2020
MATH 2730.005Multivariable CalculusSpring 2020 Syllabus
MATH 3000.002Real Analysis ISpring 2020 Syllabus
MATH 2700.010Linear Algebra and Vector GeometryFall 2019 Syllabus SPOT
MATH 5950.702Master's ThesisFall 2019
MATH 2730.002Multivariable CalculusFall 2019 Syllabus SPOT
MATH 4060.001Foundations of GeometrySpring 2019 Syllabus SPOT
MATH 5950.702Master's ThesisSpring 2019
MATH 2730.005Multivariable CalculusSpring 2019 Syllabus SPOT
MATH 2730.006Multivariable CalculusSpring 2019 Syllabus SPOT
MATH 4100.001Fourier AnalysisFall 2018 Syllabus SPOT
MATH 5000.002Instructional Issues for the Professional MathematicianFall 2018
MATH 4520.001Introduction to Functions of a Complex VariableFall 2018 Syllabus SPOT
MATH 2730.003Multivariable CalculusFall 2018 Syllabus SPOT
MATH 2730.004Multivariable CalculusFall 2018 Syllabus SPOT
MATH 2730.501Multivariable CalculusFall 2018 Syllabus SPOT
MATH 2730.503Multivariable CalculusFall 2018 Syllabus SPOT
MATH 5900.707Special ProblemsFall 2018
MATH 4060.001Foundations of GeometrySpring 2018 Syllabus SPOT
MATH 5320.001Functions of a Real VariableSpring 2018 SPOT
MATH 2700.002Linear Algebra and Vector GeometrySpring 2018 Syllabus SPOT
MATH 5910.702Special ProblemsSpring 2018
MATH 6520.001Algebra SeminarFall 2017
MATH 6620.001Algebraic TopologyFall 2017 SPOT
MATH 2730.003Multivariable CalculusFall 2017 Syllabus SPOT
MATH 2730.004Multivariable CalculusFall 2017 Syllabus SPOT
MATH 2730.500Multivariable CalculusFall 2017 Syllabus
MATH 2730.501Multivariable CalculusFall 2017 Syllabus SPOT
MATH 3740.001Vector CalculusFall 2017 Syllabus SPOT
MATH 4060.001Foundations of GeometrySpring 2017 Syllabus SPOT
MATH 2700.008Linear Algebra and Vector GeometryFall 2016 Syllabus SPOT
MATH 3610.001Real Analysis IIFall 2016 Syllabus SPOT
MATH 4900.703Special ProblemsFall 2016
MATH 4060.001Foundations of GeometrySpring 2016 Syllabus SPOT
MATH 5950.702Master's ThesisSpring 2016
MATH 4060.001Foundations of GeometryFall 2015 Syllabus SPOT
MATH 4951.001Honors College Capstone ThesisFall 2015
MATH 2700.005Linear Algebra and Vector GeometryFall 2015 Syllabus SPOT
MATH 4060.001Foundations of GeometrySpring 2015 Syllabus
MATH 2700.006Linear Algebra and Vector GeometrySpring 2015 Syllabus
MATH 5420.001COMPLEX VARIABLESpring 2014
MATH 5410.002Functions of a Complex VariableFall 2013
MATH 5420.001COMPLEX VARIABLESpring 2013
MATH 6950.714Doctoral DissertationSpring 2013
MATH 2700.004Linear Algebra and Vector GeometrySpring 2013 Syllabus
MATH 4910.703Special ProblemsSpring 2013
MATH 6950.708Doctoral DissertationFall 2012
MATH 5410.002Functions of a Complex VariableFall 2012
MATH 3000.002Real Analysis IFall 2012 Syllabus
MATH 4900.711Special ProblemsFall 2012
MATH 6950.714Doctoral DissertationSpring 2012
MATH 2700.001Linear Algebra and Vector GeometrySpring 2012 Syllabus
MATH 2700.002Linear Algebra and Vector GeometrySpring 2012 Syllabus
MATH 4900.710Special ProblemsSpring 2012
MATH 6910.703Special ProblemsSpring 2012
MATH 6950.708Doctoral DissertationFall 2011
MATH 3000.001Real Analysis IFall 2011 Syllabus
MATH 3610.001Real Analysis IIFall 2011 Syllabus
MATH 6900.758Special ProblemsFall 2011
MATH 4900.708Special ProblemsSummer 5W2 2011
MATH 4060.001Foundations of GeometrySpring 2011 Syllabus
MATH 4900.710Special ProblemsSpring 2011
MATH 3000.001Real Analysis IFall 2010 Syllabus
MATH 1580.005Survey of Mathematics with ApplicationsFall 2010 Syllabus
MATH 4060.001Foundations of GeometrySpring 2010
MATH 5530.001Selected Topics in Modern AlgebraSpring 2010
MATH 6900.755Special ProblemsSpring 2010
MATH 5520.001Modern AlgebraFall 2009
MATH 4900.711Special ProblemsFall 2009
MATH 5900.720Special ProblemsFall 2009
MATH 1780.001Probability ModelsSummer 5W2 2009
MATH 5420.001COMPLEX VARIABLESpring 2009
MATH 2700.003Linear Algebra and Vector GeometrySpring 2009
MATH 2700.004Linear Algebra and Vector GeometrySpring 2009
MATH 2900.001Special ProblemsSpring 2009
MATH 6900.758Special ProblemsSpring 2009
MATH 5410.002Functions of a Complex VariableFall 2008
MATH 3610.001Real Analysis IIFall 2008
MATH 4900.711Special ProblemsFall 2008
MATH 6950.707Doctoral DissertationSpring 2008
MATH 4060.001Foundations of GeometrySpring 2008
MATH 6940.768Individual ResearchSpring 2008
MATH 2730.004Multivariable CalculusSpring 2008
MATH 6950.708Doctoral DissertationFall 2007
MATH 6940.709Individual ResearchFall 2007
MATH 6940.724Individual ResearchFall 2007
MATH 1650.300Pre CalculusFall 2007
MATH 6950.707Doctoral DissertationSpring 2007
MATH 4060.001Foundations of GeometrySpring 2007
MATH 4100.002Fourier AnalysisSpring 2007
MATH 6940.768Individual ResearchSpring 2007
MATH 4900.713Special ProblemsSpring 2007
MATH 6900.758Special ProblemsSpring 2007
MATH 6950.708Doctoral DissertationFall 2006
MATH 1010.040Fundamentals of AlgebraFall 2006
MATH 2730.001Multivariable CalculusFall 2006
MATH 6900.758Special ProblemsFall 2006
MATH 6940.768Individual ResearchSpring 2006
MATH 6900.755Special ProblemsSpring 2006
MATH 6900.758Special ProblemsSpring 2006
MATH 6940.724Individual ResearchFall 2005
MATH 1400.002College Math with CalculusSummer 5W2 2005
MATH 1780.001Probability ModelsSummer 5W2 2005
MATH 2770.002Discrete Mathematical StructuresSpring 2005
MATH 4060.001Foundations of GeometrySpring 2005
MATH 5900.720Special ProblemsSpring 2005
MATH 1400.006College Math with CalculusFall 2004
MATH 1650.300Pre CalculusFall 2004
MATH 5900.712Special ProblemsFall 2004
MATH 6900.768Special ProblemsFall 2004

Published Intellectual Contributions

    Book

  • Cherry, W.A., Ye, Z. (2001). Nevanlinna’s theory of value distribution. xii+201. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-662-12590-8
  • Lang, S., Cherry, W.A. (1990). Topics in Nevanlinna theory. 1433 174. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/BFb0093846
  • Conference Proceeding

  • Cherry, W.A. (2011). Existence of GCD’s and factorization in rings of non-Archimedean entire functions. Contemporary Mathematics. Advances in non-Archimedean analysis. 551 57–69. Amer. Math. Soc., Providence, RI. http://dx.doi.org/10.1090/conm/551/10885
  • Cherry, W.A., Wang, J.T. (2002). Non-Archimedean analytic maps to algebraic curves. Contemporary Mathematics. Value distribution theory and complex dynamics (Hong Kong,2000). 303 7–35. Amer. Math. Soc., Providence, RI. http://dx.doi.org/10.1090/conm/303/05235
  • Cherry, W.A. (1999). Applications of explicit error terms in Nevanlinna theory. Recent developments in complex analysis and computer algebra(Newark, DE, 1997). 4 47–67. Kluwer Acad. Publ., Dordrecht. http://dx.doi.org/10.1007/978-1-4613-0297-1_5
  • Cherry, W.A. (1992). The Nevanlinna error term for coverings, generically surjective case. Proceedings Symposium on Value Distribution Theory in Several Complex Variables (Notre Dame, IN, 1990). 12 37–53. Univ. Notre Dame Press, Notre Dame, IN.
  • Journal Article

  • Fincher, M., Olney, H., Cherry, W.A. (2015). Some projective distance inequalities for simplices in complexprojective space. Involve - A Journal of Mathematics. 8 (4) 707–719. http://dx.doi.org/10.2140/involve.2015.8.707
  • An, T.T., Cherry, W.A., Wang, J.T. (2015). Supplement and Erratum to “Algebraic degeneracy ofnon-Archimedean analytic maps” [Indag. Math. (N.S.)19 (2008) 481–492] [2513064]. Indagationes Mathematicae. 26 (2) 329–336. http://dx.doi.org/10.1016/j.indag.2014.11.001
  • Cherry, W.A., Eremenko, A. (2011). Landau’s theorem for holomorphic curves in projective space and the Kobayashi metric on hyperplane complements. Other. 7 (1) 199–221. http://dx.doi.org/10.4310/PAMQ.2011.v7.n1.a9
  • An, T.T., Cherry, W.A. (2011). Preface [Special issue dedicated to Professor Hà Huy Khoái on the occasion of his 65th birthday]. Other. 39 (3) v–vii.
  • Cherry, W.A., Toropu, C. (2009). Generalized ABC theorems for non-Archimedean entirefunctions of several variables in arbitrary characteristic. Acta Arithmetica. 136 (4) 351–384. http://dx.doi.org/10.4064/aa136-4-4
  • An, T.T., Cherry, W.A., Wang, J.T. (2008). Algebraic degeneracy of non-Archimedean analytic maps. Indagationes Mathematicae. 19 (3) 481–492. http://dx.doi.org/10.1016/S0019-3577(08)80014-6
  • Cherry, W.A., Ru, M. (2004). Rigid analytic Picard theorems. American Journal of Mathematics. 126 (4) 873–889. http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.4cherry.pdf
  • Boutabaa, A., Cherry, W.A., Escassut, A. (2002). Erratum to: “Unique range sets in positive characteristic”[Acta Arith. 103 (2002), no. 2, 169–189;MR1904871 (2003m:30067a)]. Acta Arithmetica. 105 (3) 303. http://dx.doi.org/10.4064/aa105-3-6
  • Boutabaa, A., Cherry, W.A., Escassut, A. (2002). Unique range sets in positive characteristic. Acta Arithmetica. 103 (2) 169–189. http://dx.doi.org/10.4064/aa103-2-6
  • Cherry, W.A., Wang, J.T. (2002). Uniqueness polynomials for entire functions. Other. 13 (3) 323–332. http://dx.doi.org/10.1142/S0129167X02001344
  • Bonk, M., Cherry, W.A. (1999). Metric distortion and triangle maps. Annales Academiæ Scientiarum Fennicæ. 24 (2) 489–510.
  • Cherry, W.A., Yang, C. (1999). Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity. Other. 127 (4) 967–971. http://dx.doi.org/10.1090/S0002-9939-99-04789-9
  • Cherry, W.A. (1997). A survey of Nevanlinna theory over non-Archimedean fields. Other. 1 (2) 235–249.
  • Cherry, W.A., Ye, Z. (1997). Non-Archimedean Nevanlinna theory in several variables andthe non-Archimedean Nevanlinna inverse problem. Transactions of the American Mathematical Society. 349 (12) 5043–5071. http://dx.doi.org/10.1090/S0002-9947-97-01874-6
  • Cherry, W.A. (1996). A non-Archimedean analogue of the Kobayashi semi-distanceand its non-degeneracy on abelian varieties. Illinois Journal of Mathematics. 40 (1) 123–140. http://projecteuclid.org/euclid.ijm/1255986193
  • Bonk, M., Cherry, W.A. (1996). Bounds on spherical derivatives for maps into regions withsymmetries. Journal d'Analyse Mathematique. 69 249–274. http://dx.doi.org/10.1007/BF02787109
  • Cherry, W.A. (1994). Non-Archimedean analytic curves in abelian varieties. Other. 300 (3) 393–404. http://dx.doi.org/10.1007/BF01450493
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE