Faculty Profile

Wonbong Choi

Title
Professor
Department
Materials Science and Engineering
College
College of Engineering

    

Education

PhD, North Carolina State University, 1997.
Major: Materials Science And Engineer

Current Scheduled Teaching*

MTSE 6950.120, Doctoral Dissertation, Spring 2024
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2024 Syllabus
MTSE 5500.008, Electronic, Optical and Magnetic Materials, Spring 2024
MTSE 3003.005, Fundamentals of Materials Science and Engineering Laboratory, Spring 2024 Syllabus
MTSE 3003.006, Fundamentals of Materials Science and Engineering Laboratory, Spring 2024 Syllabus

* Texas Education Code 51.974 (HB 2504) requires each institution of higher education to make available to the public, a syllabus for undergraduate lecture courses offered for credit by the institution.

Previous Scheduled Teaching*

MTSE 6950.016, Doctoral Dissertation, Fall 2023
MEEN 4480.001, Energy Materials, Fall 2023 Syllabus SPOT
MEEN 5480.001, Energy Materials, Fall 2023 SPOT
MTSE 6940.016, Individual Research, Fall 2023
MTSE 5800.025, Special Studies in Materials Science, Fall 2023 SPOT
MEEN 6950.726, Doctoral Dissertation, Spring 2023
MTSE 6950.120, Doctoral Dissertation, Spring 2023
MTSE 5500.008, Electronic, Optical and Magnetic Materials, Spring 2023 Syllabus SPOT
MTSE 3003.005, Fundamentals of Materials Science and Engineering Laboratory, Spring 2023 Syllabus SPOT
MTSE 3003.006, Fundamentals of Materials Science and Engineering Laboratory, Spring 2023 Syllabus SPOT
MTSE 3003.007, Fundamentals of Materials Science and Engineering Laboratory, Spring 2023 Syllabus SPOT
MTSE 3003.009, Fundamentals of Materials Science and Engineering Laboratory, Spring 2023 Syllabus SPOT
MEEN 5950.726, Masters Thesis, Spring 2023
MEEN 6950.722, Doctoral Dissertation, Fall 2022
MEEN 4480.001, Energy Materials, Fall 2022 Syllabus SPOT
MEEN 5760.001, Energy Materials, Fall 2022 Syllabus SPOT
MEEN 5760.601, Energy Materials, Fall 2022 SPOT
MEEN 5950.726, Masters Thesis, Fall 2022
MTSE 5800.025, Special Studies in Materials Science, Fall 2022 Syllabus SPOT
MEEN 5950.725, Masters Thesis, Summer 10W 2022
MEEN 6950.726, Doctoral Dissertation, Spring 2022
MTSE 6940.008, Individual Research, Spring 2022
MTSE 6940.016, Individual Research, Spring 2022
MEEN 5950.726, Masters Thesis, Spring 2022
MTSE 5900.016, Special Problems in Materials Research, Spring 2022
MEEN 6950.722, Doctoral Dissertation, Fall 2021
MTSE 6950.016, Doctoral Dissertation, Fall 2021
MEEN 4480.001, Energy Materials, Fall 2021 Syllabus SPOT
MEEN 5760.001, Energy Materials, Fall 2021 Syllabus SPOT
MEEN 5760.601, Energy Materials, Fall 2021 SPOT
MTSE 6940.016, Individual Research, Fall 2021
MEEN 5950.726, Masters Thesis, Fall 2021
MEEN 6950.726, Doctoral Dissertation, Spring 2021
MTSE 6950.016, Doctoral Dissertation, Spring 2021
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2021 Syllabus SPOT
MTSE 3003.005, Fundamentals of Materials Science and Engineering Laboratory, Spring 2021 Syllabus SPOT
MTSE 3003.007, Fundamentals of Materials Science and Engineering Laboratory, Spring 2021 Syllabus SPOT
MTSE 3003.010, Fundamentals of Materials Science and Engineering Laboratory, Spring 2021 Syllabus SPOT
MTSE 6940.008, Individual Research, Spring 2021
MTSE 5950.016, Master's Thesis, Spring 2021
MEEN 6950.726, Doctoral Dissertation, Fall 2020
MTSE 6950.016, Doctoral Dissertation, Fall 2020
MEEN 4480.001, Energy Materials, Fall 2020 Syllabus SPOT
MTSE 6940.016, Individual Research, Fall 2020
MTSE 6940.216, Individual Research, Fall 2020
MEEN 5950.726, Masters Thesis, Fall 2020
MEEN 5800.004, Selected Topics of Contemporary Interest in Mechanical Engineering, Fall 2020 Syllabus SPOT
MTSE 5800.001, Special Studies in Materials Science, Fall 2020 Syllabus SPOT
MTSE 5900.016, Special Problems in Materials Research, Summer 5W2 2020
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2020 Syllabus
MTSE 3003.005, Fundamentals of Materials Science and Engineering Laboratory, Spring 2020 Syllabus
MTSE 3003.006, Fundamentals of Materials Science and Engineering Laboratory, Spring 2020
MTSE 3003.007, Fundamentals of Materials Science and Engineering Laboratory, Spring 2020
MTSE 3003.008, Fundamentals of Materials Science and Engineering Laboratory, Spring 2020
MEEN 6940.716, Individual Research, Spring 2020
MTSE 6940.008, Individual Research, Spring 2020
MTSE 6940.016, Individual Research, Spring 2020
MTSE 6940.116, Individual Research, Spring 2020
MTSE 5900.016, Special Problems in Materials Research, Spring 2020
MEEN 4480.001, Energy Materials, Fall 2019 Syllabus SPOT
MEEN 6940.744, Individual Research, Fall 2019
MTSE 6940.016, Individual Research, Fall 2019
MTSE 6940.216, Individual Research, Fall 2019
MEEN 5800.004, Selected Topics of Contemporary Interest in Mechanical Engineering, Fall 2019 Syllabus SPOT
MTSE 6900.016, Special Problems, Fall 2019
MTSE 6910.016, Special Problems, Fall 2019
MTSE 5900.016, Special Problems in Materials Research, Fall 2019
MTSE 6950.118, Doctoral Dissertation, Summer 10W 2019
MTSE 4900.021, Special Topics in Materials Science and Engineering, Summer 10W 2019
MTSE 6950.016, Doctoral Dissertation, Spring 2019
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2019 Syllabus SPOT
MTSE 3003.005, Fundamentals of Materials Science and Engineering Laboratory, Spring 2019 Syllabus SPOT
MTSE 3003.006, Fundamentals of Materials Science and Engineering Laboratory, Spring 2019 Syllabus SPOT
MTSE 3003.007, Fundamentals of Materials Science and Engineering Laboratory, Spring 2019 Syllabus SPOT
MTSE 3003.008, Fundamentals of Materials Science and Engineering Laboratory, Spring 2019 Syllabus SPOT
MTSE 6940.008, Individual Research, Spring 2019
MTSE 6900.016, Special Problems, Spring 2019
MTSE 6910.016, Special Problems, Spring 2019
MTSE 6950.016, Doctoral Dissertation, Fall 2018
MTSE 6940.016, Individual Research, Fall 2018
MTSE 6940.116, Individual Research, Fall 2018
MTSE 5630.001, Introduction to Nanotechnology, Fall 2018 SPOT
MEEN 5800.004, Selected Topics of Contemporary Interest in Mechanical Engineering, Fall 2018 SPOT
MEEN 5800.604, Selected Topics of Contemporary Interest in Mechanical Engineering, Fall 2018 SPOT
MTSE 4900.016, Special Topics in Materials Science and Engineering, Fall 2018
MEEN 4810.004, Topics in Mechanical & Energy Engineering, Fall 2018 Syllabus SPOT
MTSE 6950.016, Doctoral Dissertation, Spring 2018
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2018 Syllabus SPOT
MTSE 4900.016, Special Topics in Materials Science and Engineering, Spring 2018
MTSE 6950.016, Doctoral Dissertation, Fall 2017
MTSE 5800.001, Special Studies in Materials Science, Fall 2017 SPOT
MTSE 4900.016, Special Topics in Materials Science and Engineering, Fall 2017
MTSE 4900.021, Special Topics in Materials Science and Engineering, Summer 10W 2017
MTSE 6950.016, Doctoral Dissertation, Spring 2017
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2017 Syllabus SPOT
MEEN 5800.003, Selected Topics of Contemporary Interest in Mechanical Engineering, Spring 2017 SPOT
MEEN 4800.003, Topics in Mechanical & Energy Engineering, Spring 2017 Syllabus SPOT
MTSE 6950.016, Doctoral Dissertation, Fall 2016
MTSE 6940.016, Individual Research, Fall 2016
MTSE 6940.116, Individual Research, Fall 2016
MTSE 5600.005, Materials Characterization, Fall 2016 SPOT
MTSE 4910.016, Materials Science Research, Fall 2016
MTSE 6940.118, Individual Research, Summer 10W 2016
MTSE 2900.021, Introduction to Materials Science Research, Summer 10W 2016
MTSE 6950.016, Doctoral Dissertation, Spring 2016
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2016 Syllabus SPOT
MTSE 6940.008, Individual Research, Spring 2016
MTSE 6940.116, Individual Research, Spring 2016
MEEN 5950.728, Masters Thesis, Spring 2016
MTSE 5900.016, Special Problems in Materials Research, Spring 2016
MTSE 6950.016, Doctoral Dissertation, Fall 2015
MTSE 6940.016, Individual Research, Fall 2015
MEEN 5950.726, Masters Thesis, Fall 2015
MTSE 5600.005, Materials Characterization, Fall 2015 SPOT
MTSE 5920.016, Research Problems in Lieu of Thesis, Fall 2015
MTSE 5930.016, Research Problems in Lieu of Thesis, Fall 2015
MTSE 5900.016, Special Problems in Materials Research, Fall 2015
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2015 Syllabus
MTSE 6940.008, Individual Research, Spring 2015
MTSE 6940.016, Individual Research, Spring 2015
MTSE 6940.116, Individual Research, Spring 2015
MTSE 5800.016, Special Studies in Materials Science, Spring 2015
MTSE 6940.016, Individual Research, Fall 2014
MTSE 5600.005, Materials Characterization, Fall 2014
MTSE 5900.016, Special Problems in Materials Research, Fall 2014
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2014
MTSE 6940.008, Individual Research, Spring 2014
MTSE 6940.016, Individual Research, Spring 2014
MTSE 4100.016, Senior Research Project II, Spring 2014
MTSE 5600.005, Materials Characterization, Fall 2013
MTSE 4090.016, Senior Research Project I, Fall 2013
MTSE 3070.008, Electrical, Optical, and Magnetic Properties of Materials, Spring 2013 Syllabus
MTSE 6940.016, Individual Research, Spring 2013
MTSE 6900.016, Special Problems, Spring 2013
MTSE 6910.016, Special Problems, Spring 2013
MTSE 5600.005, Materials Characterization, Fall 2012

* Texas Education Code 51.974 (HB 2504) requires each institution of higher education to make available to the public, a syllabus for undergraduate lecture courses offered for credit by the institution.

Published Publications

Published Intellectual Contributions

Book
Choi, W. (2021). Rechargeable Lithium-Sulfur Battery: Present and Future. https://www.mdpi.com/journal/batteries/special_issues/Rechargeable_Lithium-Sulfur_Battery_Present_Future
Choi, W. (2017). Nanoscience and technology: an international journal. 8(4), . New York:.
Choi, W. (2017). Nanoscience and Technology. 8(3), . New York: Begell.
Book Chapter
Choudhary, N., Choi, W. (2015). Graphene Synthesis and Applications. Handbook of Carbon Nano Materials. 1-49. WORLD SCIENTIFIC. http://dx.doi.org/10.1142/9789814678919_0001
Das, S., Sudhagar, P., Kang, Y. S., Choi, W. (2015). Synthesis and Characterization of Graphene. Carbon Nanomaterials for Advanced Energy Systems. 85-131. John Wiley & Sons, Inc. http://dx.doi.org/10.1002/9781118980989.ch3
Choudhary, N., Hwang, S., Choi, W. (2014). Carbon Nanomaterials: A Review. Handbook of Nanomaterials Properties. 709-769. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-31107-9_37
Kang, C., Lahiri, I., Baskaran, R., Choi, M., Kim, W., Sun, Y., Choi, W. (2014). 3D Multiwall Carbon Nanotubes (MWCNTs) for Li-Ion Battery Anode. Supplemental Proceedings. 35-41. John Wiley & Sons, Inc.. http://dx.doi.org/10.1002/9781118357002.ch5
Viswanathan, S., Li, P., Choi, W., Filipek, S., Balasubramaniam, T., Renugopalakrishnan, V. (2012). Protein–Carbon Nanotube Sensors. Methods in Enzymology. 165-194. Elsevier. http://dx.doi.org/10.1016/b978-0-12-391858-1.00010-1
Lee, J., Choi, W. (2005). Current Status of Nanotechnology in Korea and Research into Carbon Nanotubes. Nanotechnology. 25-44. John Wiley & Sons, Ltd. http://dx.doi.org/10.1002/0470021071.ch2
Conference Proceeding
Omary, D., Dawn, M., Quonoey, B., Choi, W., Mehta, G. (2022). Data acquisition and Online Pressure Map Generation for a Defect-engineered MoS2-based Piezoelectric Sensor Array. IEEE Dallas Circuits and Systems Conference.
Al-Amin, C., Sinha, R., Pala, N., Choi, W., George, T., Islam, M. S., Dutta, A. K. (2014). Novel graphene FETs with field-controlling electrodes to improve RF performance. Micro- and Nanotechnology Sensors, Systems, and Applications VI. SPIE. http://dx.doi.org/10.1117/12.2050985
Choi, W., Lahiri, I. (2012). Novel design considerations for high efficiency carbon nanotube field emitters. 25th International Vacuum Nanoelectronics Conference. IEEE. http://dx.doi.org/10.1109/ivnc.2012.6316855
Viswanathan, S., Pingzuo Li,, Wonbong Choi,, Filipek, S., Balasubramaniam, T. A., Renugopalakrishnan, V. (2012). Protein-carbon nanotube and graphene sensors: Single platform integrated micro clinical lab for monitoring blood analytes. 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1). IEEE. http://dx.doi.org/10.1109/ispts.2012.6260869
Das, S., Lahiri, I., Kang, C., Choi, W. (2011). Engineering carbon nanomaterials for future applications: energy and bio-sensor. Micro- and Nanotechnology Sensors, Systems, and Applications III. SPIE. http://dx.doi.org/10.1117/12.883743
Choi, W., Vedala, H., Kim, T., Hwang, S., Jeon, M. (2008). Electronic Detection and Influence of Environmental Factors on Conductivity of Single DNA Molecule using Single-walled Carbon Nanotube Electrodes. Materials Research Society Symposium Proceedings. Materials Research Society. http://dx.doi.org/10.1557/proc-1142-jj20-44
Correction
Seelaboyina, R., Huang, J., Park, J., Kang, D. H., Choi, W. B. (2007). Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions (vol 17, pg 4840, 2006). Nanotechnology. 18(27), .
Cover Feature
Choi, W. (2020). Improving Lithium-Metal Battery Performance under the Conditions of Lean Electrolyte through MoS2 Coating. ChemElectroChem.
Editorial
Choi, W., Miller, G., Wallace, I., Harper, J., Mittler, R., Gilroy, S. (2017). Orchestrating rapid long-distance signaling in plants with Ca<sup>2+</sup> , ROS and electrical signals.. Other.
Journal Article
Kang, C., Cha, E., Patel, M., Wu, H., Choi, W. Three-Dimensional Carbon Nanostructures for Advanced Lithium-Ion Batteries. Other. 2(4), 23. MDPI AG. http://dx.doi.org/10.3390/c2040023
Adhikari, P. R., Lee, E., Smith, L. M., Kim, J., Shi, S. Q., Choi, W. (2023). Effect of morphological variation in three-dimensional multiwall carbon nanotubes as the host cathode material for high-performance rechargeable lithium--sulfur batteries. RSC Advances. 13(14), 9402--9412. Royal Society of Chemistry.
Choi, W. (2023). Investigation of 3D printed lightweight hybrid composites via theoretical modeling and machine learning. Composites Part B: Engineering. 265, 110958.
Choi, W. (2023). 2.Boosting Piezoelectricity by 3D Printing PVDF-MoS2 Composite as a Conformal and High-Sensitivity Piezoelectric Sensor. Advanced Functional Materials. 33, 2302946. Wiley.
Choi, W. (2023). Effect of Morphological Variation in Three-Dimensional Multiwall Carbon Nanotubes as Host Cathode Material for High-Performance Rechargeable Lithium-Sulfur Batteries. RSC Advances. 13, 9402.
Choi, W. (2023). Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing. ACS Applied Materials & Interfaces. 15(12), 15839. https://doi.org/10.1021/acsami.2c21688
Choi, W. (2023). Lithium-CO2 batteries and beyond. Frontiers in Energy Research. 11, 1150737.
Ojo, I., Hathaway, E., Gonzales, R., Adhikari, P., Sathish, V., Kunam, B., Khalid, Y., Cui, J., Choi, W., Perez, J. (2022). Effects on Graphene of Electron Irradiation at 25 keV and Dosages Up to 10^18 electrons/cm^2. Journal of Vacuum Science and Technology A. 41(1), 012201.
Stephen, A., Bhoyate, S., Cao, P., Advincula, R. C., Dahotre, N. B., Jiang, Y., Choi, W. (2022). 3D Printed Flexible Anode for High Performance Zinc Ion Battery. MRS Communications. 12, 894.
Dahotre, N. B., Choi, W., Jiang, Y. (2022). Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Other. Wiley.
Choi, W. (2022). 3D-printed flexible anode for high-performance zinc ion battery. MRS Communications. (12), 894-901.
Demchuk, Z., Zhu, J., Li, B., Islam, M., Cao, P., Bocharova, V., Yang, G., Zhou, H., Jiang, Y., Choi, W., Advincula, R. C., Cao, P. (2022). Unravelling the influence of surface modification on the ultimate performance of carbon fiber/epoxy composites. ACS Applied Materials & Interfaces. 14(40), 45775.
Jiang, Y., Islam, M., He, R., Huang, X., Cao, P., Advincula, R. C., Dahotre, N., Dong, P., Wu, H., Choi, W. (2022). Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Other. 2200492.
Choi, W. (2022). Data acquisition and Online Pressure Map Generation for a Defect-engineered MoS2-based Piezoelectric Sensor Array. IEEE Circuits and Systems Magazine. 1. IEEE.
Khatri, N., Islam, M., Cao, P., Advincula, R. C., Choi, W., Jiang, Y. (2021). Integrating helicoid channels for passive control of fiber alignment in direct-write 3D printing. Other. 48, 102419.
Ferdousi, S., Chen, Q., Soltani, M., Zhu, J., Cao, P., Choi, W., Advincula, R., Jiang, Y. (2021). Characterize traction–separation relation and interfacial imperfections by data-driven machine learning models. Scientific Reports. 11, 14330.
Choi, W., Prasad, V., Mehta, G., kim, j., lee, e. (2021). Asymmetric 2D MoS2 for Scalable and High-Performance Piezoelectric Sensors. ACS Applied Materials & Interfaces. ACS Publications.
Choi, W. (2021). Advances of 2D MoS2 for High-Energy Lithium Metal Batteries. Frontiers in Energy. 9, 44.
Choi, W. (2020). Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale. 5(5), 808.
Shi, J., Patel, M. D., Cai, L., Choi, W., Shi, S. Q. (2020). Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. Bulletin of Materials Science. 43(1), 1--6. Indian Academy of Sciences.
Choi, W. (2020). Improving Lithium–Metal Battery Performance under Lean Electrolyte through MoS2 Coating. ChemPhysChem. 7, 890-892. Wiley. https://onlinelibrary.wiley.com/doi/pdf/10.1002/celc.201901735
Choi, W. (2020). Realizing Scalable Two-Dimensional MoS2 Synaptic Devices for Neuromorphic Computing. Chemistry of Materials. 32(24), 10447. ACS Publications. https://pubs.acs.org/doi/10.1021/acs.chemmater.0c03112
Choi, W., Mehta, G., Kim, J. (2020). Stable and high-performance piezoelectric sensor via CVD grown WS2. Nanotechnology. 31, 445203. https://iopscience.iop.org/article/10.1088/1361-6528/aba659
Choi, W. (2020). Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2‑Coated Zn Anode. ACS Applied Materials & Interfaces. 12(24), 27249-27257. ACS.
Cha, E., Patel, M., Bhoyate, S., Prasad, V., Choi, W. (2020). Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. The Royal Society of Chemistry. (1:5(5)), 808-831. doi: 10.1039/c9nh00730j
Choi, W. (2020). Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. Bulletin of Materials Science.
Choi, W. (2019). Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. 1, 43.
Cha, E., Patel, M., Choi, T., Choi, W. (2018). Lithium-Sulfur Batteries: The Effect of High Sulfur Loading on the Electrochemical Performance. ECS Transactions. 85(13), 295-302. Denton:. 3940 N. Elm St.
choi, w. (2018). Composition-tunable synthesis of large-scale Mo1-xWxS2 alloys with enhanced photoluminescence. ACS Nano. 12(6), 6301.
choi, w. (2018). Composition-tunable synthesis of large-scale Mo1-xWxS2 alloys with enhanced photoluminescence. ACS Nano. Prof.. 12(6), 6301-6309.
Cha, E., Patel, M. D., Park, J. G., Hwang, J., Prasad, V., Cho, K., Choi, W. (2018). 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries.. Nature Nanotechnology.
Choi, w., Kang, C., Cha, E. In situ fabrication of a graphene-coated threedimensional nickel oxide anode for high-capacity lithium-ion batteries. RSC Advances.
Park, J., Kim, M. S., Cha, E., Kim, J., Choi, W. (2017). Synthesis of uniform single layer WS2 for tunable photoluminescence. Scientific Reports. 7(1), . Springer Nature. http://dx.doi.org/10.1038/s41598-017-16251-2
Patel, M. D., Cha, E., Kang, C., Gwalani, B., Choi, W. (2017). High performance rechargeable Li-S batteries using binder-free large sulfur-loaded three-dimensional carbon nanotubes. Carbon. 118, 120-126. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2017.03.035
Patel, M. D., Cha, E., Choi, W. (2017). A Binder Free and High Sulfur Loaded Three-Dimensional Carbon Nanotubes Electrode for High Performance Li-S Batteries. ECS Transactions. 77(11), 437-445. The Electrochemical Society. http://dx.doi.org/10.1149/07711.0437ecst
Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today. 20(3), 116-130. Elsevier BV. http://dx.doi.org/10.1016/j.mattod.2016.10.002
Ozden, B., Khanal, M. P., Park, J., Uprety, S., Mirkhani, V., Yapabandara, K., Kim, K., Kuroda, M., Bozack, M. J., Choi, W., Park, M. (2017). Raman and X-ray photoelectron spectroscopy investigation of the effect of gamma-ray irradiation on MoS2. Other. 12(4), 271-274. Institution of Engineering and Technology (IET). http://dx.doi.org/10.1049/mnl.2016.0712
Xia, C., Kang, C., Patel, M. D., Cai, L., Gwalani, B., Banerjee, R., Shi, S. Q., Choi, W. (2016). Pine Wood Extracted Activated Carbon through Self-Activation Process for High-Performance Lithium-Ion Battery. ChemistrySelect. 1(13), 4000–4007.
Xia, C., Kang, C., Patel, M. D., Cai, L., Gwalani, B., Banerjee, R., Shi, S. Q., Choi, W. (2016). Pine Wood Extracted Activated Carbon through Self-Activation Process for High-Performance Lithium-Ion Battery. ChemistrySelect. 1(13), 4000--4007.
Jeong, J., Shrestha, R., Lee, K., Horne, K., Das, S., Choi, W., Choi, T. (2016). Thermal conductivity measurement of few layer graphene film by a micropipette sensor with laser point heating source. Materials Research Express.
Patel, M. D., Cha, E., Choudhary, N., Kang, C., Lee, W., Hwang, J. Y., Choi, W. (2016). Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries. Nanotechnology. 27(49), 495401. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/27/49/495401
Patel, M. D., Cha, E., Choudhary, N., Kang, C., Lee, W., Hwang, J. Y., Choi, W. (2016). Vertically oriented MoS<sub>2</sub> nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries.. Nanotechnology. 27(49), 495401.
Choudhary, N., Park, J., Hwang, J. Y., Chung, H., Dumas, K. H., Khondaker, S. I., Choi, W., Jung, Y. (2016). Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure. Scientific Reports. 6(1), . Springer Nature. http://dx.doi.org/10.1038/srep25456
Choudhary, N., Park, J. G., Hwang, J. Y., Chung, H. S., Dumas, K. H., Khondaker, S. I., Choi, W., Jung, Y. (2016). Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure.. Scientific Reports. 6, 25456.
Choudhary, N., Patel, M. D., Park, J., Sirota, B., Choi, W. (2016). Synthesis of large scale MoS2 for electronics and energy applications. Journal of Materials Research. 31(07), 824-831. Cambridge University Press (CUP). http://dx.doi.org/10.1557/jmr.2016.100
Kang, C., Cha, E., Baskaran, R., Choi, W. (2016). Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode. Nanotechnology. 27(10), 105402. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/27/10/105402
Kang, C., Cha, E., Baskaran, R., Choi, W. (2016). Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode.. Nanotechnology. 27(10), 105402.
Kang, C., Patel, M., Rangasamy, B., Jung, K., Xia, C., Shi, S. Q., Choi, W. (2015). Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Other. 299, 465-471. Elsevier BV. http://dx.doi.org/10.1016/j.jpowsour.2015.08.103
Dahotre, N. B., Choi, W., (2015). Direct-deposited MoS2 Thin Film Electrodes for High Performance Supercapacitors. 3, 24049-24054,.
Kang, C., Patel, M., Rangasamy, B., Jung, K., Xia, C., Shi, S. Q., Choi, W. (2015). Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. Other. 299, 465--471. Elsevier.
Choudhary, N., Patel, M., Ho, Y., Dahotre, N. B., Lee, W., Hwang, J. Y., Choi, W. (2015). Directly deposited MoS2 thin film electrodes for high performance supercapacitors. Other. 3(47), 24049-24054. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c5ta08095a
Choi, D., Kuru, C., Choi, C., Noh, K., Hwang, S., Choi, W., Jin, S. (2015). Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Small. 11(26), 3143-3152. Wiley-Blackwell. http://dx.doi.org/10.1002/smll.201402784
Vabbina, P., Choudhary, N., Chowdhury, A., Sinha, R., Karabiyik, M., Das, S., Choi, W., Pala, N. (2015). Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS2/Graphene Schottky Junction. ACS Applied Materials & Interfaces. 7(28), 15206-15213. American Chemical Society (ACS). http://dx.doi.org/10.1021/acsami.5b00887
Vabbina, P., Choudhary, N., Chowdhury, A. A., Sinha, R., Karabiyik, M., Das, S., Choi, W., Pala, N. (2015). Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.. ACS Applied Materials & Interfaces. 7(28), 15206-13.
Choi, D., Kuru, C., Choi, C., Noh, K., Hwang, S., Choi, W., Jin, S. (2015). Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping.. Other. 11(26), 3143-52.
Park, J., Choudhary, N., Smith, J., Lee, G., Kim, M., Choi, W. (2015). Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Applied Physics Letters. 106(1), 012104. AIP Publishing. http://dx.doi.org/10.1063/1.4905476
Choudhary, N., Park, J., Hwang, J. Y., Choi, W. (2014). Growth of Large-Scale and Thickness-Modulated MoS2 Nanosheets. ACS Applied Materials & Interfaces. 6(23), 21215-21222. American Chemical Society (ACS). http://dx.doi.org/10.1021/am506198b
Choudhary, N., Park, J. G., Hwang, J. Y., Choi, W. (2014). Growth of large-scale and thickness-modulated MoS₂ nanosheets.. ACS Applied Materials & Interfaces. 6(23), 21215-22.
Rangasamy, B., Hwang, J. Y., Choi, W. (2014). Multi layered Si–CuO quantum dots wrapped by graphene for high-performance anode material in lithium-ion battery. Carbon. 77, 1065-1072. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2014.06.022
Gilroy, S., Suzuki, N., Miller, G., Choi, W., Toyota, M., Devireddy, A. R., Mittler, R. (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.. Trends in Plant Science. 19(10), 623-30.
Das, S., Kim, M., Lee, J., Choi, W. (2014). Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review. Critical Reviews in Solid State and Materials Sciences. 39(4), 231-252. Informa UK Limited. http://dx.doi.org/10.1080/10408436.2013.836075
Choi, D., Kuru, C., Choi, C., Noh, K., Hong, S., Das, S., Choi, W., Jin, S. (2014). Nanopatterned Graphene Field Effect Transistor Fabricated Using Block Co-polymer Lithography. Materials Research Letters. 2(3), 131-139. Informa UK Limited. http://dx.doi.org/10.1080/21663831.2013.876676
Devadoss, A., Sudhagar, P., Das, S., Lee, S. Y., Terashima, C., Nakata, K., Fujishima, A., Choi, W., Kang, Y. S., Paik, U. (2014). Synergistic metal-metal oxide nanoparticles supported electrocatalytic graphene for improved photoelectrochemical glucose oxidation.. ACS Applied Materials & Interfaces. 6(7), 4864-71.
Devadoss, A., Sudhagar, P., Das, S., Lee, S. Y., Terashima, C., Nakata, K., Fujishima, A., Choi, W., Kang, Y. S., Paik, U. (2014). Synergistic Metal–Metal Oxide Nanoparticles Supported Electrocatalytic Graphene for Improved Photoelectrochemical Glucose Oxidation. ACS Applied Materials & Interfaces. 6(7), 4864-4871. American Chemical Society (ACS). http://dx.doi.org/10.1021/am4058925
Kang, C., Baskaran, R., Hwang, J., Ku, B., Choi, W. (2014). Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. Carbon. 68, 493-500. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2013.11.026
Vabbina, P. K., Karabiyik, M., Al-Amin, C., Pala, N., Das, S., Choi, W., Saxena, T., Shur, M. (2014). Controlled Synthesis of Single-Crystalline ZnO Nanoflakes on Arbitrary Substrates at Ambient Conditions. Other. 31(2), 190-194. Wiley-Blackwell. http://dx.doi.org/10.1002/ppsc.201300208
Das, S., Sudhagar, P., Kang, Y. S., Choi, W. (2014). Graphene synthesis and application for solar cells. Journal of Materials Research. 29(03), 299-319. Cambridge University Press (CUP). http://dx.doi.org/10.1557/jmr.2013.297
Niu, J., Li, M., Choi, W., Dai, L., Xia, Z. (2014). Growth of junctions in 3D carbon nanotube-graphene nanostructures: A quantum mechanical molecular dynamic study. Carbon. 67, 627-634. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2013.10.036
Das, S., Lahiri, D., Agarwal, A., Choi, W. (2014). Interfacial bonding characteristics between graphene and dielectric substrates. Nanotechnology. 25(4), 045707. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/25/4/045707
Das, S., Lahiri, D., Agarwal, A., Choi, W. (2014). Interfacial bonding characteristics between graphene and dielectric substrates.. Nanotechnology. 25(4), 045707.
Yan, Z., Ma, L., Zhu, Y., Lahiri, I., Hahm, M. G., Liu, Z., Yang, S., Xiang, C., Lu, W., Peng, Z., Sun, Z., Kittrell, C., Lou, J., Choi, W., Ajayan, P. M., Tour, J. M. (2013). Three-Dimensional Metal-Graphene-Nanotube Multifunctional Hybrid Materials. ACS Nano. 7(1), 58-64.
Das, S., Lahiri, D., Lee, D., Agarwal, A., Choi, W. (2013). Measurements of the adhesion energy of graphene to metallic substrates. Carbon. 59, 121-129. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2013.02.063
Kang, C., Baskaran, R., Kim, W., Sun, Y., Choi, W. (2013). 3 Dimensional Carbon Nanostructures for Li-ion Battery Anode. Other. 1505, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2013.538
Lahiri, I., Choi, W. (2013). Carbon Nanostructures in Lithium Ion Batteries: Past, Present, and Future. Critical Reviews in Solid State and Materials Sciences. 38(2), 128-166. Informa UK Limited. http://dx.doi.org/10.1080/10408436.2012.729765
Yan, Z., Ma, L., Zhu, Y., Lahiri, I., Hahm, M. G., Liu, Z., Yang, S., Xiang, C., Lu, W., Peng, Z., Sun, Z., Kittrell, C., Lou, J., Choi, W., Ajayan, P. M., Tour, J. M. (2013). Three-dimensional metal-graphene-nanotube multifunctional hybrid materials.. ACS Nano. 7(1), 58-64.
Kang, C., Lahiri, I., Baskaran, R., Kim, W., Sun, Y., Choi, W. (2012). 3-dimensional carbon nanotube for Li-ion battery anode. Other. 219, 364-370. Elsevier BV. http://dx.doi.org/10.1016/j.jpowsour.2012.07.050
Das, S., Sudhagar, P., Nagarajan, S., Ito, E., Lee, S. Y., Kang, Y. S., Choi, W. (2012). Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon. 50(13), 4815-4821. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2012.06.006
Lahiri, I., Wong, J., Zhou, Z., Choi, W. (2012). Ultra-high current density carbon nanotube field emitter structure on three-dimensional micro-channeled copper. Applied Physics Letters. 101(6), 063110. AIP Publishing. http://dx.doi.org/10.1063/1.4745010
Lahiri, D., Das, S., Choi, W., Agarwal, A. (2012). Unfolding the Damping Behavior of Multilayer Graphene Membrane in the Low-Frequency Regime. ACS Nano. 6(5), 3992-4000. American Chemical Society (ACS). http://dx.doi.org/10.1021/nn3014257
Lahiri, D., Das, S., Choi, W., Agarwal, A. (2012). Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime.. ACS Nano. 6(5), 3992-4000.
Das, S., Sudhagar, P., Ito, E., Lee, D., Nagarajan, S., Lee, S. Y., Kang, Y. S., Choi, W. (2012). Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry. 22(38), 20490. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c2jm32481d
Vabbina, P. K., Das, S., Pala, N., Choi, W. (2012). Synthesis of Crystalline ZnO Nanosheets on Graphene and Other Substrates at Ambient Conditions. Other. 1449, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2012.1041
Viswanathan, S., Li, P., Choi, W., Filipek, S., Balasubramaniam, T. A., Renugopalakrishnan, V. (2012). Protein-carbon nanotube sensors: single platform integrated micro clinical lab for monitoring blood analytes.. Other. 509, 165-94.
Das, S., Seelaboyina, R., Verma, V., Lahiri, I., Hwang, J. Y., Banerjee, R., Choi, W. (2011). Synthesis and characterization of self-organized multilayered graphene–carbon nanotube hybrid films. Journal of Materials Chemistry. 21(20), 7289. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c1jm10316d
Lahiri, I., Oh, S., Hwang, J. Y., Kang, C., Choi, M., Jeon, H., Banerjee, R., Sun, Y., Choi, W. (2011). Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries. Journal of Materials Chemistry. 21(35), 13621. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c1jm11474c
Das, S., Sudhagar, P., Verma, V., Song, D., Ito, E., Lee, S. Y., Kang, Y. S., Choi, W. (2011). Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells. Advanced Functional Materials. 21(19), 3729-3736. Wiley-Blackwell. http://dx.doi.org/10.1002/adfm.201101191
Lahiri, I., Choi, W. (2011). Interface control: A modified rooting technique for enhancing field emission from multiwall carbon nanotube based bulk emitters. Acta Materialia. 59(14), 5411-5421. Elsevier BV. http://dx.doi.org/10.1016/j.actamat.2011.05.014
Lahiri, I., Das, S., Kang, C., Choi, W. (2011). Application of carbon nanostructures—Energy to electronics. JOM. 63(6), 70-76. Springer Nature. http://dx.doi.org/10.1007/s11837-011-0095-1
Lahiri, I., Verma, V. P., Choi, W. (2011). An all-graphene based transparent and flexible field emission device. Carbon. 49(5), 1614-1619. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2010.12.044
Lahiri, I., Lahiri, D., Jin, S., Agarwal, A., Choi, W. (2011). Carbon Nanotubes: How Strong Is Their Bond with the Substrate?. ACS Nano. 5(2), 780-787. American Chemical Society (ACS). http://dx.doi.org/10.1021/nn102900z
Lahiri, I., Lahiri, D., Jin, S., Agarwal, A., Choi, W. (2011). Carbon nanotubes: how strong is their bond with the substrate?. ACS Nano. 5(2), 780-7.
Choi, H., Kim, H., Hwang, S., Choi, W., Jeon, M. (2011). Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Solar Energy Materials and Solar Cells. 95(1), 323-325. Elsevier BV. http://dx.doi.org/10.1016/j.solmat.2010.04.044
Lahiri, I., Oh, S., Sun, Y., Choi, W. (2011). High specific capacity and excellent stability of interface-controlled MWCNT based anodes in lithium ion battery. Other. 1313, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2011.1392
Verma, V. P., Das, S., Lahiri, I., Choi, W. (2011). Large Area Graphene on Polymer Films for Transparent and Flexible Field Emission Device. Other. 1283, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/opl.2011.801
Huang, J., Kim, U., Wang, B., Lahiri, I., Lee, E., Eklund, P., Choi, W. (2011). Controlled Growth of Single-Walled Carbon Nanotubes for Unique Nanodevices. Journal of Nanoscience and Nanotechnology. 11(1), 262-269. American Scientific Publishers. http://dx.doi.org/10.1166/jnn.2011.3156
Huang, J., Kim, U., Wang, B., Lahiri, I., Lee, E., Eklund, P. C., Choi, W. (2011). Controlled growth of single-walled carbon nanotubes for unique nanodevices.. Journal of Nanoscience and Nanotechnology. 11(1), 262-9.
Lahiri, I., Seelaboyina, R., Hwang, J. Y., Banerjee, R., Choi, W. (2010). Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon. 48(5), 1531--1538. Pergamon.
Huang, J., Wang, B., Lahiri, I., Gupta, A. K., Eklund, P. C., Choi, W. (2010). Tuning Electrical Conductance of Serpentine Single-Walled Carbon Nanotubes. Advanced Functional Materials. 20(24), 4388-4393. Wiley-Blackwell. http://dx.doi.org/10.1002/adfm.201000957
Repalle, S., Chen, J., Drozd, V., Choi, W. (2010). The Raman spectroscopic studies of aligned MWCNTs treated under high pressure and high temperature. Journal of Physics and Chemistry of Solids. 71(8), 1150-1153. Elsevier BV. http://dx.doi.org/10.1016/j.jpcs.2010.03.024
Verma, V. P., Das, S., Hwang, S., Choi, H., Jeon, M., Choi, W. (2010). Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire. Other. 171(1-3), 45-49. Elsevier BV. http://dx.doi.org/10.1016/j.mseb.2010.03.066
Lahiri, I., Oh, S., Hwang, J. Y., Cho, S., Sun, Y., Banerjee, R., Choi, W. (2010). High Capacity and Excellent Stability of Lithium Ion Battery Anode Using Interface-Controlled Binder-Free Multiwall Carbon Nanotubes Grown on Copper. ACS Nano. 4(6), 3440-3446. American Chemical Society (ACS). http://dx.doi.org/10.1021/nn100400r
Lahiri, I., Oh, S. W., Hwang, J. Y., Cho, S., Sun, Y. K., Banerjee, R., Choi, W. (2010). High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.. ACS Nano. 4(6), 3440-6.
Verma, V. P., Das, S., Lahiri, I., Choi, W. (2010). Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters. 96(20), 203108. AIP Publishing. http://dx.doi.org/10.1063/1.3431630
Lahiri, I., Seelaboyina, R., Hwang, J. Y., Banerjee, R., Choi, W. (2010). Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon. 48(5), 1531-1538. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2009.11.064
Seelaboyina, R., Lahiri, I., Choi, W. (2010). Carbon-nanotube-embedded novel three-dimensional alumina microchannel cold cathodes for high electron emission. Nanotechnology. 21(14), 145206. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/21/14/145206
Seelaboyina, R., Lahiri, I., Choi, W. (2010). Carbon-nanotube-embedded novel three-Dimensional alumina microchannel cold cathodes for high electron emission.. Nanotechnology. 21(14), 145206.
Wang, B., Gupta, A. K., Huang, J., Vedala, H., Hao, Q., Crespi, V. H., Choi, W., Eklund, P. C. (2010). Effect of bending on single-walled carbon nanotubes: A Raman scattering study. Physical Review B. 81(11), . American Physical Society (APS). http://dx.doi.org/10.1103/physrevb.81.115422
Keshri, A. K., Singh, V., Huang, J., Seal, S., Choi, W., Agarwal, A. (2010). Intermediate temperature tribological behavior of carbon nanotube reinforced plasma sprayed aluminum oxide coating. Surface and Coatings Technology. 204(11), 1847-1855. Elsevier BV. http://dx.doi.org/10.1016/j.surfcoat.2009.11.032
Keshri, A. K., Huang, J., Singh, V., Choi, W., Seal, S., Agarwal, A. (2010). Synthesis of aluminum oxide coating with carbon nanotube reinforcement produced by chemical vapor deposition for improved fracture and wear resistance. Carbon. 48(2), 431-442. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2009.08.046
Hwang, S., Vedala, H., Kim, T., Choi, W., Choi, H., Jeon, M. (2010). Fabrication and Electrochemical Characterization of Multi-walled Carbon Nanotube Electrode for Application to Nano-electrochemical sensing. Journal of The Korean Physical Society. 56(2), 677-681. Korean Physical Society. http://dx.doi.org/10.3938/jkps.56.677
Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y. S. (2010). Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences. 35(1), 52-71. Informa UK Limited. http://dx.doi.org/10.1080/10408430903505036
Lahiri, I., Seelaboyina, R., Choi, W. (2009). Field Emission Response from Multiwall Carbon Nanotubes Grown on Different Metallic Substrates. Other. 1204, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-1204-k18-21
Huang, J., Choi, W. (2008). Controlled growth and electrical characterization of bent single-walled carbon nanotubes. Nanotechnology. 19(50), 505601. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/19/50/505601
Huang, J., Choi, W. (2008). Controlled growth and electrical characterization of bent single-walled carbon nanotubes.. Nanotechnology. 19(50), 505601.
Verma, V., Hoonha Jeon,, Sookhyun Hwang,, Minhyon Jeon,, Wonbong Choi, (2008). Enhanced Electrical Conductance of ZnO Nanowire FET by Nondestructive Surface Cleaning. IEEE Transactions on Nanotechnology. 7(6), 782-786. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/tnano.2008.2005186
Verma, V. P., Kim, D., Jeon, H., Jeon, M., Choi, W. (2008). Characteristics of low doped gallium-zinc oxide thin film transistors and effect of annealing under high vacuum. Thin Solid Films. 516(23), 8736-8739. Elsevier BV. http://dx.doi.org/10.1016/j.tsf.2008.06.054
Vedala, H., Roy, S., Doud, M., Mathee, K., Hwang, S., Jeon, M., Choi, W. (2008). The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes. Nanotechnology. 19(26), 265704. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/19/26/265704
Vedala, H., Roy, S., Doud, M., Mathee, K., Hwang, S., Jeon, M., Choi, W. (2008). The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes.. Nanotechnology. 19(26), 265704.
Kim, D., Jeon, H., Kim, G., Hwangboe, S., Verma, V. P., Choi, W., Jeon, M. (2008). Comparison of the optical properties of undoped and Ga-doped ZnO thin films deposited using RF magnetron sputtering at room temperature. Optics Communications. 281(8), 2120-2125. Elsevier BV. http://dx.doi.org/10.1016/j.optcom.2007.12.015
Seelaboyina, R., Boddepalli, S., Noh, K., Jeon, M., Choi, W. (2008). Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology. 19(6), 065605. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/19/6/065605
Seelaboyina, R., Boddepalli, S., Noh, K., Jeon, M., Choi, W. (2008). Enhanced field emission from aligned multistage carbon nanotube emitter arrays.. Nanotechnology. 19(6), 065605.
Roy, S., Vedala, H., Roy, A. D., Kim, D., Doud, M., Mathee, K., Shin, H., Shimamoto, N., Prasad, V., Choi, W. (2008). Direct Electrical Measurements on Single-Molecule Genomic DNA Using Single-Walled Carbon Nanotubes. Nano Letters. 8(1), 26-30. American Chemical Society (ACS). http://dx.doi.org/10.1021/nl0716451
Jeon, H., Verma, V. P., Hwang, S., Lee, S., Park, C., Kim, D., Choi, W., Jeon, M. (2008). Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method. Japanese Journal of Applied Physics. 47(1), 87-90. Japan Society of Applied Physics. http://dx.doi.org/10.1143/jjap.47.87
Roy, S., Vedala, H., Roy, A. D., Kim, D. H., Doud, M., Mathee, K., Shin, H. K., Shimamoto, N., Prasad, V., Choi, W. (2008). Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes.. Nano Letters. 8(1), 26-30.
Kim, D., Jeon, H., Leem, J., Jeon, M., Verma, V. P., Choi, W., Lee, S. H., Moon, J. (2007). Influence of Grain Size and Room-Temperature Sputtering Condition on Optical and Electrical Properties of Undoped and Ga-Doped ZnO Thin Films. Journal of The Korean Physical Society. 51(6), 1987. Korean Physical Society. http://dx.doi.org/10.3938/jkps.51.1987
Jeon, H., Noh, K., Kim, D., Jeon, M., Verma, V. P., Choi, W., Kim, D., Moon, J. (2007). Low-Voltage Zinc-Oxide Thin-Film Transistors on a Conventional SiO2 Gate Insulator Grown by Radio-Frequency Magnetron Sputtering at Room Temperature. Journal of The Korean Physical Society. 51(6), 1999. Korean Physical Society. http://dx.doi.org/10.3938/jkps.51.1999
Seelaboyina, R., Choi, W. (2007). Recent Progress of Carbon Nanotube Field Emitters and Their Application. Other. 1(3), 238-244. Bentham Science Publishers Ltd.. http://dx.doi.org/10.2174/187221007782360439
Huang, J., Kim, D. H., Seelaboyina, R., Rao, B. K., Wang, D., Park, M., Choi, W. (2007). Catalysts effect on single-walled carbon nanotube branching. Diamond and Related Materials. 16(8), 1524-1529. Elsevier BV. http://dx.doi.org/10.1016/j.diamond.2006.12.043
Jang, W., Choi, S., Lee, S., Shul, Y., Han, H. (2007). Characterizations and stability of polyimide–phosphotungstic acid composite electrolyte membranes for fuel cell. Other. 92(7), 1289-1296. Elsevier BV. http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.022
Jang, W., Shin, D., Choi, S., Park, S., Han, H. (2007). Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films. Polymer. 48(7), 2130-2143. Elsevier BV. http://dx.doi.org/10.1016/j.polymer.2007.02.023
Choi, W., Kim, D., Choi, Y. C., Huang, J. (2007). Y-junction single-wall carbon nanotube electronics. JOM. 59(3), 44-49. Springer Nature. http://dx.doi.org/10.1007/s11837-007-0038-z
Seelaboyina, R., Choi, W. (2007). Recent progress of carbon nanotube field emitters and their application.. Other. 1(3), 238-44.
Kim, D., Huang, J., Shin, H., Roy, S., Choi, W. (2006). Transport Phenomena and Conduction Mechanism of Single-Walled Carbon Nanotubes (SWNTs) at Y- and Crossed-Junctions. Nano Letters. 6(12), 2821-2825. American Chemical Society (ACS). http://dx.doi.org/10.1021/nl061977q
Vedala, H., Huang, J., Zhou, X. Y., Kim, G., Roy, S., Choi, W. B. (2006). Effect of PVA functionalization on hydrophilicity of Y-junction single wall carbon nanotubes. Applied Surface Science. 252(22), 7987-7992.
Kim, D. H., Huang, J., Shin, H. K., Roy, S., Choi, W. (2006). Transport phenomena and conduction mechanism of single-walled carbon nanotubes (SWNTs) at Y- and crossed-junctions.. Nano Letters. 6(12), 2821-5.
Kim, D., Huang, J., Rao, B. K., Choi, W. (2006). Pseudo Y-Junction Single-Walled Carbon Nanotube Based Ambipolar Transistor Operating at Room Temperature. IEEE Transactions on Nanotechnology. 5(6), 731-736. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/tnano.2006.885028
Kim, D., Huang, J., Rao, B. K., Choi, W. (2006). Nonlinear characteristics of pseudo-Y-junction single-walled carbon nanotubes. Journal of Applied Physics. 99(5), 056106. AIP Publishing. http://dx.doi.org/10.1063/1.2179134
Roy, S., Vedala, H., Choi, W. (2006). Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology. 17(4), S14-S18. IOP Publishing. http://dx.doi.org/10.1088/0957-4484/17/4/003
Roy, S., Vedala, H., Choi, W. (2006). Vertically aligned carbon nanotube probes for monitoring blood cholesterol.. Nanotechnology. 17(4), S14-8.
Huang, J., Rao, B. K., Vedala, H., Kim, D., Jeon, M., Park, W., Choi, W. (2006). Controlled Carbon Nanotube Networks and its Corresponding Channel Effect at High Bias. Other. 963, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-0963-q10-51
Verma, V. P., Kim, D., Jeon, M., Choi, W. (2006). Fabrication and Characteristics of Low Doped Gallium-Zinc Oxide Thin Film Transistor. Other. 963, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-0963-q12-01
Choi, Y. C., Choi, W. (2005). Synthesis of Y-junction single-wall carbon nanotubes. Carbon. 43(13), 2737-2741. Elsevier BV. http://dx.doi.org/10.1016/j.carbon.2005.05.020
Vedala, N. H., Choi, Y. C., Zhou, X. Y., Kim, G., Choi, W. (2004). Polymer Functionalized Carbon nanotubes for sensor application. Other. 858, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-858-hh13.22
Yi, W., Yu, S., Lee, W., Han, I. T., Jeong, T., Woo, Y., Lee, J., Jin, S., Choi, W., Heo, J., Jeon, D., Kim, J. (2001). Secondary electron emission yields from MgO deposited on carbon nanotubes. Journal of Applied Physics. 89(7), 4091-4095. AIP Publishing. http://dx.doi.org/10.1063/1.1351862
Chu, J., Jeong, K., Bae, E., Yoo, I., Choi, W., Kim, J. (2001). Electrical Property of Vertically Grown Carbon Nanotube and its Application to the Nanofunctional Devices. Other. 675, . Cambridge University Press (CUP). http://dx.doi.org/10.1557/proc-675-w9.3.1
Yoo, I. K., Moon, C., Choi, W., Kim, S., Bae, E., Chung, S. (2001). Feasibility studies on pyroelectric emission for lithography application. Integrated Ferroelectrics: An International Journal. 41(1-4), 17-24. Informa UK Limited. http://dx.doi.org/10.1080/10584580108012803

Awarded Grants

Contracts, Grants and Sponsored Research

Contract
choi, w. (Principal), "Advanced rechargeable batteries performance test," Sponsored by Hunt Energy, Private, $28435 Funded. (August 23, 2021June 22, 2022).
Choi, W., "UNT-PROVIDED/INCOMING SERVICE Contract," Sponsored by Ark Power Tech Co, National, $25965 Funded. (December 18, 2019September 30, 2020).
Young, M. L. (Co-Principal), Choi, W. (Principal), Shi, S. Q. (Co-Principal), "High efficiency Zn-ion battery by additive manufacturing," Sponsored by UNT AMMPI, University of North Texas, $30000 Funded. (September 2018August 2019).
Grant - Research
Choi, W., "Development of surface stabilized Zn-anode in Zn-air battery," Sponsored by MOTIE Korea/MPS Korea, Federal, $350000 Funded. (June 1, 2022December 31, 2025).
choi, w., "Co-development of rechargeable Zinc-based batteries," Sponsored by HUNT Energy Enterprises, Private, $32560 Funded. (January 1, 2023December 31, 2023).
Choi, W. (Principal), Jiang, Y. (Co-Principal), "• 3D printed multifunctional structure in advanced vehicle for in-situ vehicle health monitoring," Sponsored by DOE, Federal, $405000 Funded. (October 1, 2020September 30, 2023).
Choi, W., Prasad, V. (Other), "High-Energy, High-Performance Li-S Battery with Novel 2D- & 3D-Nanostructured Electrodes," Sponsored by Ark Power Tech Corporation/NAVAIR, Federal, $121998 Funded. (January 4, 2022January 31, 2023).
choi, w. (Principal), prasad, v. (Co-Principal), "High-Performance Li-S Battery with Novel 2D- & 3D-Nanostructured Electrodes,," Sponsored by NAVAIR, State, $121998 Funded. (December 15, 2021December 14, 2022).
Choi, W. (Principal), "Robust 2D-TMDs Synaptic Devices for Low-Power Consumption Neuromorphic Computing by Organized Interfaces," Sponsored by ARMY, National, $5000 Funded. (October 1, 2021September 30, 2022).
Choi, W. (Principal), Mahbub, I. (Co-Principal), "Self-powered Wireless Sensors and Interfaces for UAVs," Sponsored by University of North Texas, Federal, $211786 Funded. (July 20, 2021July 19, 2022).
Choi, W. (Principal), Mehta, G. (Co-Principal), "REU supplement - Flexible wireless joint sensing system for knee arthroplasty," Sponsored by NSF, Federal, $10000 Funded. (March 1, 2021January 31, 2022).
Choi, W., "Charge Transport in Two-Dimensional Materials Based Integrated Flexible Energy System," Sponsored by Air Force Office of Scientific Research, Federal, $151144 Funded. (December 1, 2020January 31, 2022).
Choi, W. (Principal), Mehta, G. (Co-Principal), "Eager: Flexible wireless joint sensing system for knee arthroplasty," Sponsored by NSF, Federal, $150000 Funded. (September 01, 2019August 31, 2021).
choi, w. (Principal), Prasad, V. (Other), "Integrated Flexible Energy System based on Two-Dimensional (2D) Materials," Sponsored by US AFOSR, Federal, $300000 Funded. (July 2, 2018July 1, 2021).
Choi, W. (Principal), "Development of surface stabilized Zn-anode in Zn-air battery," Sponsored by KITECH, International, $60000 Funded. (January 01, 2019December 31, 2020).
choi, w., "NAiEEL Technology gift funds," Sponsored by NAiEEL Technology, Private, $10000 Funded. (October 02, 2017December 31, 2019).
choi, w., "Bio-electronic Computing based on Nano-engineered Materials," Sponsored by OFFICE OF RESEARCH AND ECONOMIC DEVELOPMENT, University of North Texas, $10000 Funded. (January 10, 2018August 31, 2018).
choi, w. (Co-Principal), "Multi-functional nano coatings for anti-corrosion and friction-reduction," Sponsored by UNT-AMMPI, University of North Texas, $15000 Funded. (November 1, 2016August 31, 2017).
choi, w. (Principal), "High Performance Energy Storage devices based Nanomaterials," Sponsored by AMMPI, Local, $10000 Funded. (September 1, 2015August 31, 2016).
choi, w. (Principal), "Study of Interfacial Bonding of Graphene/Substrate for an Efficiency Heat Pad in Nanoelectronic Device," Sponsored by SRC, International, $145000 Funded. (January 01, 2014July 31, 2016).
choi, w. (Principal), "High Efficiency Flexible Rechargeable Battery based on 3D Graphene-Carbon Nanotubes," Sponsored by KIER, International, $100000 Funded. (February 01, 2015January 31, 2016).
choi, w. (Principal), "3D Carbon Nanomaterials towards High Efficiency Energy Storage," Sponsored by KIST, International, $100000 Funded. (January 1, 2013December 31, 2015).
Grant - Service
Choi, W., "Gift fund for new material development," Sponsored by NanoSD, Private, $20000 Funded. (January 1, 2020December 31, 2020).
Sponsored Research
Choi, W., "WFM Inc. gift funds," Private, $10000 Funded. (May 1, 2018December 30, 2019).
Choi, W., "Gift Funds," Sponsored by NAiEEL Technology, International, $6700 Funded. (December 1, 2017December 30, 2018).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE