Skip to main content

Guru Khalsa

Title: Assistant Professor

Department: Physics

College: College of Science

Curriculum Vitae

Curriculum Vitae Link

Education

  • PhD, University of Texas at Austin, 2013
    Major: Physics

Current Scheduled Teaching

PHYS 6940.767Individual ResearchSpring 2026
PHYS 3510.001Physics, Computation and Software ApplicationsSpring 2026
PHYS 1270.003Science and Technology of Musical SoundSpring 2026 Syllabus
PHYS 4950.755Senior ThesisSpring 2026
PHYS 4955.755Senior Thesis CapstoneSpring 2026
PHYS 5910.767Special ProblemsSpring 2026

Previous Scheduled Teaching

PHYS 6940.770Individual ResearchFall 2025
PHYS 3510.001Physics, Computation and Software ApplicationsFall 2025 Syllabus SPOT
PHYS 4950.765Senior ThesisFall 2025
PHYS 5910.775Special ProblemsFall 2025
PHYS 6940.767Individual ResearchSpring 2025
PHYS 4500.001Introduction to Solid State PhysicsSpring 2025 Syllabus SPOT
PHYS 2900.752Special ProblemsSpring 2025
PHYS 5900.753Special ProblemsSpring 2025
PHYS 5910.767Special ProblemsSpring 2025
PHYS 5450.001Survey of Solid State PhysicsSpring 2025 Syllabus SPOT
PHYS 6940.770Individual ResearchFall 2024
PHYS 3510.001Physics, Computation and Software ApplicationsFall 2024 Syllabus SPOT
PHYS 5910.775Special ProblemsFall 2024
PHYS 6940.767Individual ResearchSpring 2024
PHYS 4500.001Introduction to Solid State PhysicsSpring 2024 Syllabus SPOT
PHYS 5450.001Survey of Solid State PhysicsSpring 2024 SPOT

Published Intellectual Contributions

    Book Chapter

  • Riou, M., Torrejon, J., Abreu Araujo, F., Tsunegi, S., Khalsa, G., Querlioz, D., Bortolotti, P., Leroux, N., Marković, D., Cros, V., Yakushiji, K., Fukushima, A., Kubota, H., Yuasa, S., Stiles, M.D., Grollier, J. (2021). Reservoir Computing Leveraging the Transient Non-linear Dynamics of Spin-Torque Nano-Oscillators. Natural Computing Series. 307-329. Springer Singapore. https://doi.org/10.1007/978-981-13-1687-6_13
  • Conference Proceeding

  • Zheng, J., Khalsa, G., Moses, J. (2024). Phonon-dressed third-harmonic generation in diamond. Nonlinear Frequency Generation and Conversion: Materials and Devices XXIII. 48. SPIE. https://doi.org/10.1117/12.3007719
  • Zheng, J., Khalsa, G., Moses, J. (2023). Phonon-Dressed Third-harmonic Generation in Diamond. Optica Nonlinear Optics Topical Meeting 2023. Th1B.6. Optica Publishing Group. https://doi.org/10.1364/nlo.2023.th1b.6
  • Khalsa, G., Benedek, N.A., Moses, J. (2022). Giant Optical Nonlinearities and Ultrafast Control of Optical Symmetry via IR-Resonant Raman Scattering. The International Conference on Ultrafast Phenomena (UP) 2022. W3A.1. Optica Publishing Group. https://doi.org/10.1364/up.2022.w3a.1
  • Zheng, J., Khalsa, G., Benedek, N.A., Moses, J. (2022). Two-pulse enabled coherent control of structural dynamics. The International Conference on Ultrafast Phenomena (UP) 2022. W4A.20. Optica Publishing Group. https://doi.org/10.1364/up.2022.w4a.20
  • Khalsa, G., Zheng, J., Benedek, N.A., Moses, J., Schunemann, P.G., Petrov, V. (2022). Giant Raman shifting susceptibilities via infrared-resonant scattering. Nonlinear Frequency Generation and Conversion: Materials and Devices XXI. 7. SPIE. https://doi.org/10.1117/12.2614037
  • Khalsa, G., Benedek, N.A., Moses, J. (2021). Giant Optical Nonlinearities via Infrared-Resonant Raman Scattering. OSA Nonlinear Optics 2021. NF2B.4. Optica Publishing Group. https://doi.org/10.1364/nlo.2021.nf2b.4
  • Zhang, Y.F., Liu, M.B., Khalsa, G., Jena, D., Xing, H.G. (2020). A Tight-Binding Model for Gallium Oxide: The Newest Ultra Wide-Bandgap Semiconductor. 2020 IEEE MIT Undergraduate Research Technology Conference (URTC). 1-4. IEEE. https://doi.org/10.1109/urtc51696.2020.9668854
  • Katzer, D.S., Nepal, N., Hardy, M.T., Downey, B.P., Storm, D.F., Jin, E.N., Meyer, D.J., Yan, R., Khalsa, G., Wright, J., Xing, H., Jena, D. (2019). Molecular Beam Epitaxy of Transition Metal Nitrides for Superconducting Device Applications. 2019 Compound Semiconductor Week (CSW). 1-1. IEEE. https://doi.org/10.1109/iciprm.2019.8819351
  • Grollier, J., Torrejon, J., Riou, M., Cros, V., Querlioz, D., Tsunegi, S., Fukushima, A., Kubota, H., Yuasa, S., Stiles, M.D., Khalsa, G., Drouhin, H., Wegrowe, J., Razeghi, M. (2016). Superparamagnetic tunnel junctions for bio-inspired computing (Conference Presentation). Spintronics IX. 22. SPIE. https://doi.org/10.1117/12.2236990
  • Journal Article

  • Li, S.J., Khalsa, G., Kaaret, J.Z., Benedek, N.A. (2025). Understanding long-lived metastable phases in ultrafast optical experiments. Other. 11 (1) Springer Science and Business Media LLC. https://doi.org/10.1038/s41535-025-00833-9
  • He, Z., Khalsa, G. (2025). A light switch for a hidden order. Science. 390 (6769) 131-131. American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.aeb8208
  • Baydin, A., Luo, J., He, Z., Doumani, J., Lin, T., Tay, F., He, J., Zhou, J., Khalsa, G., Kono, J., Zhu, H. (2025). Lattice-induced spin dynamics in Dirac magnet CoTiO3. Journal of Applied Physics. 138 143905. https://pubs.aip.org/aip/jap/article/138/14/143905/3367201/Lattice-induced-spin-dynamics-in-Dirac-magnet
  • Gollwitzer, J., Kaaret, J.Z., Suyolcu, Y.E., Khalsa, G., Fernandes, R.C., Gorobtsov, O., Buchenau, S., You, C., Higgins, J., Russell, R.S., Shao, Z., Birkhölzer, Y.A., Sato, T., Chollet, M., Coslovich, G., Brützam, M., Guguschev, C., Harter, J.W., Disa, A.S., Schlom, D.G., Benedek, N.A., Singer, A. (2025). Picosecond Expansion in LaAlO3 Resonantly Driven by Infrared-Active Phonons. Physical Review Letters. 135 (11) American Physical Society (APS). https://doi.org/10.1103/vzkw-n2bm
  • He, Z., Khalsa, G. (2024). Optical control of ferroaxial order. Other. 6 (4) American Physical Society (APS). https://doi.org/10.1103/physrevresearch.6.043220
  • Savant, C.P., Verma, A., Nguyen, T., van Deurzen, L., Chen, Y., He, Z., Rezaie, S.S., Gollwitzer, J., Gregory, B., Sarker, S., Ruff, J., Khalsa, G., Singer, A., Muller, D.A., Xing, H.G., Jena, D., Casamento, J. (2024). Self-activated epitaxial growth of ScN films from molecular nitrogen at low temperatures. APL Materials. 12 (11) AIP Publishing. https://doi.org/10.1063/5.0222995
  • Zheng, J., Khalsa, G., Moses, J. (2024). Phonon-mediated third-harmonic generation in diamond. Other. 22 (1) American Physical Society (APS). https://doi.org/10.1103/PhysRevApplied.22.014066
  • Verma, A., Golež, D., Gorobtsov, O.Y., Kaj, K., Russell, R., Kaaret, J.Z., Lamb, E., Khalsa, G., Nair, H.P., Sun, Y., Bouck, R., Schreiber, N., Ruf, J.P., Ramaprasad, V., Kubota, Y., Togashi, T., Stoica, V.A., Padmanabhan, H., Freeland, J.W., Benedek, N.A., Shpyrko, O.G., Harter, J.W., Averitt, R.D., Schlom, D.G., Shen, K.M., Millis, A.J., Singer, A. (2024). Picosecond volume expansion drives a later-time insulator–metal transition in a nano-textured Mott insulator. Other. 20 (5) 807-814. Springer Science and Business Media LLC. https://doi.org/10.1038/s41567-024-02396-1
  • Khalsa, G., Kaaret, J.Z., Benedek, N.A. (2024). Coherent control of the translational and point group symmetries of crystals with light. Physical Review B. 109 (2) American Physical Society (APS). https://doi.org/10.1103/physrevb.109.024110
  • Zhang, Y., Liu, M., Jena, D., Khalsa, G. (2022). Tight-binding band structure of β- and α-phase Ga2O3 and Al2O3. Journal of Applied Physics. https://doi.org/10.1063/5.0074598
  • Kaaret, J.Z., Khalsa, G., Benedek, N.A. (2022). A strategy to identify materials exhibiting a large nonlinear phononics response: tuning the ultrafast structural response of LaAlO3 with pressure. Journal of Physics: Condensed Matter. 34 (3) 035402. IOP Publishing. https://doi.org/10.1088/1361-648x/ac3038
  • Mallick, S., Khalsa, G., Kaaret, J.Z., Zhang, W., Batuk, M., Gibbs, A.S., Hadermann, J., Halasyamani, P.S., Benedek, N.A., Hayward, M.A. (2021). The influence of the 6s2 configuration of Bi3+ on the structures of A′BiNb2O7(A′ = Rb, Na, Li) layered perovskite oxides. Dalton Transactions. 50 (42) 15359-15369. Royal Society of Chemistry (RSC). https://doi.org/10.1039/d1dt02974f
  • Yu, T., Wright, J., Khalsa, G., Pamuk, B., Chang, C.S., Matveyev, Y., Wang, X., Schmitt, T., Feng, D., Muller, D.A., Xing, H.G., Jena, D., Strocov, V.N. (2021). Momentum-resolved electronic structure and band offsets in an epitaxial NbN/GaN superconductor/semiconductor heterojunction. Science Advances. 7 (52) American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/sciadv.abi5833
  • Lei, C., Khalsa, G., Du, J., MacDonald, A.H. (2021). Majorana zero modes in a cylindrical semiconductor quantum wire. Physical Review B. 104 (3) American Physical Society (APS). https://doi.org/10.1103/physrevb.104.035426
  • Olsson, K.S., Choe, J., Rodriguez-Vega, M., Khalsa, G., Benedek, N.A., He, J., Fang, B., Zhou, J., Fiete, G.A., Li, X. (2021). Spin-phonon interaction in yttrium iron garnet. Physical Review B. 104 (2) American Physical Society (APS). https://doi.org/10.1103/physrevb.104.l020401
  • Khalsa, G., Benedek, N.A., Moses, J. (2021). Ultrafast Control of Material Optical Properties via the Infrared Resonant Raman Effect. Physical Review X. 11 (2) American Physical Society (APS). https://doi.org/10.1103/physrevx.11.021067
  • Wright, J., Chang, C., Waters, D., Lüpke, F., Feenstra, R., Raymond, L., Koscica, R., Khalsa, G., Muller, D., Xing, H.G., Jena, D. (2021). Unexplored MBE growth mode reveals new properties of superconducting NbN. Other. 5 (2) American Physical Society (APS). https://doi.org/10.1103/physrevmaterials.5.024802
  • Dang, P., Khalsa, G., Chang, C.S., Katzer, D.S., Nepal, N., Downey, B.P., Wheeler, V.D., Suslov, A., Xie, A., Beam, E., Cao, Y., Lee, C., Muller, D.A., Xing, H.G., Meyer, D.J., Jena, D. (2021). An all-epitaxial nitride heterostructure with concurrent quantum Hall effect and superconductivity. Science Advances. 7 (8) American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/sciadv.abf1388
  • Katzer, D.S., Nepal, N., Hardy, M.T., Downey, B.P., Storm, D.F., Jin, E.N., Yan, R., Khalsa, G., Wright, J., Lang, A.C., Growden, T.A., Gokhale, V., Wheeler, V.D., Kramer, A.R., Yater, J.E., Xing, H.G., Jena, D., Meyer, D.J. (2020). Molecular Beam Epitaxy of Transition Metal Nitrides for Superconducting Device Applications. Physica Status Solidi (a). 217 (3) Wiley. https://doi.org/10.1002/pssa.202070014
  • Riou, M., Araujo, F., Torrejon, J., Tsunegi, S., Khalsa, G., Querlioz, D., Bortolotti, P., Cros, V., Yakushiji, K., Fukushima, A., Kubota, H., Yuasa, S., Stiles, M., Grollier, J. (2019). Neuromorphic Computing through Time-Multiplexing with a Spin-Torque Nano-Oscillator .... https://dx.doi.org/10.48550/arxiv.1904.11236
  • Mei, A.B., Miao, L., Wahila, M.J., Khalsa, G., Wang, Z., Barone, M., Schreiber, N.J., Noskin, L.E., Paik, H., Tiwald, T.E., Zheng, Q., Haasch, R.T., Sangiovanni, D.G., Piper, L.F., Schlom, D.G. (2019). Adsorption-controlled growth and properties of epitaxial SnO films. Other. 3 (10) American Physical Society (APS). https://doi.org/10.1103/physrevmaterials.3.105202
  • Jena, D., Page, R., Casamento, J., Dang, P., Singhal, J., Zhang, Z., Wright, J., Khalsa, G., Cho, Y., Xing, H.G. (2019). The new nitrides: layered, ferroelectric, magnetic, metallic and superconducting nitrides to boost the GaN photonics and electronics eco-system. Japanese Journal of Applied Physics. 58 (SC) SC0801. IOP Publishing. https://doi.org/10.7567/1347-4065/ab147b
  • Yan, R., Khalsa, G., Schaefer, B.T., Jarjour, A., Rouvimov, S., Nowack, K.C., Xing, H.G., Jena, D. (2019). Thickness dependence of superconductivity in ultrathin NbS2. Other. 12 (2) 023008. IOP Publishing. https://doi.org/10.7567/1882-0786/aaff89
  • Zhu, T., Khalsa, G., Havas, D.M., Gibbs, A.S., Zhang, W., Halasyamani, P.S., Benedek, N.A., Hayward, M.A. (2018). Cation Exchange as a Mechanism To Engineer Polarity in Layered Perovskites. Chemistry of Materials. 30 (24) 8915-8924. American Chemical Society (ACS). https://doi.org/10.1021/acs.chemmater.8b04136
  • Yan, R., Khalsa, G., Vishwanath, S., Han, Y., Wright, J., Rouvimov, S., Katzer, D.S., Nepal, N., Downey, B.P., Muller, D.A., Xing, H.G., Meyer, D.J., Jena, D. (2018). GaN/NbN epitaxial semiconductor/superconductor heterostructures. Nature. 555 (7695) 183-189. Springer Science and Business Media LLC. https://doi.org/10.1038/nature25768
  • Khalsa, G., Benedek, N.A. (2018). Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles. Other. 3 (1) Springer Science and Business Media LLC. https://doi.org/10.1038/s41535-018-0086-3
  • Torrejon, J., Riou, M., Araujo, F.A., Tsunegi, S., Khalsa, G., Querlioz, D., Bortolotti, P., Cros, V., Yakushiji, K., Fukushima, A., Kubota, H., Yuasa, S., Stiles, M.D., Grollier, J. (2017). Neuromorphic computing with nanoscale spintronic oscillators. Nature. 547 (7664) 428-431. Springer Science and Business Media LLC. https://doi.org/10.1038/nature23011
  • Bhattacharya, A., Skinner, B., Khalsa, G., Suslov, A.V. (2016). Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate. Nature Communications. 7 (1) Springer Science and Business Media LLC. https://doi.org/10.1038/ncomms12974
  • Khalsa, G., Stiles, M.D., Grollier, J. (2015). Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection. Applied Physics Letters. 106 (24) AIP Publishing. https://doi.org/10.1063/1.4922740
  • Xie, M., Khalsa, G., MacDonald, A. (2014). Optical conductivity of the $t_2g$ two-dimensional electron gas. Other. https://link.aps.org/doi/10.1103/PhysRevB.89.245417
  • Araki, Y., Khalsa, G., MacDonald, A.H. (2014). Weak localization, spin relaxation, and spin diffusion: Crossover between weak and strong Rashba coupling limits. Physical Review B. 90 (12) American Physical Society (APS). https://doi.org/10.1103/physrevb.90.125309
  • Xie, M., Khalsa, G., MacDonald, A.H. (2014). Optical conductivity of thet2gtwo-dimensional electron gas. Physical Review B. 89 (24) American Physical Society (APS). https://doi.org/10.1103/physrevb.89.245417
  • Allen, S., Jalan, B., Lee, S., Ouellette, D.G., Khalsa, G., Jaroszynski, J., Stemmer, S., MacDonald, A.H. (2013). Conduction-band edge and Shubnikov--de Haas effect in low-electron-density SrTiO$_3$. Other. https://link.aps.org/doi/10.1103/PhysRevB.88.045114
  • Khalsa, G., Lee, B., MacDonald, A. (2013). Theory of $t_2g$ electron-gas Rashba interactions. Other. https://link.aps.org/doi/10.1103/PhysRevB.88.041302
  • Chang, Y., Khalsa, G., Moreschini, L., Walter, A.L., Bostwick, A., Horn, K., MacDonald, A.H., Rotenberg, E. (2013). Uniaxial strain induced band splitting in semiconducting SrTiO$_3$. Other. https://link.aps.org/doi/10.1103/PhysRevB.87.115212
  • Allen, S.J., Jalan, B., Lee, S., Ouellette, D.G., Khalsa, G., Jaroszynski, J., Stemmer, S., MacDonald, A.H. (2013). Conduction-band edge and Shubnikov–de Haas effect in low-electron-density SrTiO3. Physical Review B. 88 (4) American Physical Society (APS). https://doi.org/10.1103/physrevb.88.045114
  • Khalsa, G., Lee, B., MacDonald, A.H. (2013). Theory oft2gelectron-gas Rashba interactions. Physical Review B. 88 (4) American Physical Society (APS). https://doi.org/10.1103/physrevb.88.041302
  • Chang, Y.J., Khalsa, G., Moreschini, L., Walter, A.L., Bostwick, A., Horn, K., MacDonald, A.H., Rotenberg, E. (2013). Uniaxial strain induced band splitting in semiconducting SrTiO3. Physical Review B. 87 (11) American Physical Society (APS). https://doi.org/10.1103/physrevb.87.115212
  • Khalsa, G., MacDonald, A.H. (2012). Theory of the SrTiO$_3$ surface state two-dimensional electron gas. Other. https://link.aps.org/doi/10.1103/PhysRevB.86.125121
  • Khalsa, G., MacDonald, A.H. (2012). Theory of the SrTiO3surface state two-dimensional electron gas. Physical Review B. 86 (12) American Physical Society (APS). https://doi.org/10.1103/physrevb.86.125121
  • Bistritzer, R., Khalsa, G., MacDonald, A.H. (2011). Electronic structure of doped $d^0$ perovskite semiconductors. Other. https://link.aps.org/doi/10.1103/PhysRevB.83.115114
  • Manuscript

  • Bistritzer, R., Khalsa, G., MacDonald, A.H. (2010). d0 Perovskite-Semiconductor Electronic Structure. http://arxiv.org/abs/1010.3090

Contracts, Grants and Sponsored Research

    Contract

  • Shepherd, N.D. (Principal), Voevodin, A.A. (Co-Principal), Philipose, U. (Co-Principal), Reidy, R.F. (Co-Principal), Khalsa, G. (Co-Principal), Padilla, P.A. (Co-Principal), "Texas Institute for Electronics (TIE) Next-Generation Microelectronics Manufacturing (NGMM) Center (TNC)," sponsored by UT-TIE, State, $875000 Funded. (2024 - 2029).
  • Grant - Research

  • Khalsa, G., "2024-2025 Research Seed Grant : FuSe2 Topic 3: AlBN Hi-K and Ferroelectric Gate-Barrier GaN HEMTs for Extreme Environment Power, RF, and Memory Applications," sponsored by UNT VPRI, University of North Texas, $10000 Funded. (2025).
  • Khalsa, G., "FuSe2 Topic 3: AlBN Hi-K and Ferroelectric Gate-Barrier GaN HEMTs for Extreme Environment Power, RF, and Memory Applications," sponsored by UNT COS Research Seed, University of North Texas, $10000 Funded. (2025).
  • Rout, B. (Principal), Khalsa, G. (Co-Principal), Philipose, U. (Co-Principal), "Engineering Materials and Devices for Optimized Performances Under Extreme Conditions," sponsored by CHIPS in the Metroplex Collaboration, Regional, $25000 Funded. (2024).
  • Khalsa, G. (Principal), Joshi, S.S. (Principal), "Stepping Out of the Sandbox: Expanding Additive Manufacturing to Functionalized Materials," sponsored by UNT COS/CENG Collaborative Research, University of North Texas, $10000 Funded. (2024).
  • Shepherd, N.D. (Principal), Voevodin, A.A. (Co-Principal), Philipose, U. (Co-Principal), Khalsa, G. (Co-Principal), Reidy, R.F. (Co-Principal), Padilla, P.A. (Co-Principal), "Texas Institute for Electronics (TIE) Next-Generation Microelectronics Manufacturing (NGMM) Center (TNC)," sponsored by UT-TIE, Federal, $1625000 Funded. (2024 - 2029).
  • Grant - Service

  • Khalsa, G., Fatemi, V. (Co-Principal), Shabani, J. (Co-Principal), Mason, N. (Co-Principal), "2025 Hybrid Superconductor-Semiconductor Devices," sponsored by AFOSR, Federal, $15000 Funded. (2025 - 2025).
,
Overall
Summative Rating
Challenge and
Engagement Index
Response Rate

out of 5

out of 7
%
of
students responded
  • Overall Summative Rating (median):
    This rating represents the combined responses of students to the four global summative items and is presented to provide an overall index of the class’s quality. Overall summative statements include the following (response options include a Likert scale ranging from 5 = Excellent, 3 = Good, and 1= Very poor):
    • The course as a whole was
    • The course content was
    • The instructor’s contribution to the course was
    • The instructor’s effectiveness in teaching the subject matter was
  • Challenge and Engagement Index:
    This rating combines student responses to several SPOT items relating to how academically challenging students found the course to be and how engaged they were. Challenge and Engagement Index items include the following (response options include a Likert scale ranging from 7 = Much higher, 4 = Average, and 1 = Much lower):
    • Do you expect your grade in this course to be
    • The intellectual challenge presented was
    • The amount of effort you put into this course was
    • The amount of effort to succeed in this course was
    • Your involvement in course (doing assignments, attending classes, etc.) was
CLOSE